Citation: ZHANG Yan-Feng, GAO Teng, LIU Zhong-Fan. Controlled Growth of Graphene on Metal Substrates and STM Characterizations for Microscopic Morphologies[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2456-2464. doi: 10.3866/PKU.WHXB201209062
-
Recently, chemical vapor deposition (CVD) has been widely applied to the large-scale synthesis of graphene on various metal substrates. As a powerful and direct imaging method, scanning tunneling microscopy (STM) has been used to study the microscopic morphologies of graphene on metal substrates, for the purpose of further optimizing the growth parameters. This review presents the recent progress in the controlled growth of graphene on Cu foils, Pt foils, and Ni substrates, as well as the research of the microscopic morphologies, defect states, and stacking orders of graphene. Monolayer growth of graphene on Cu and Pt foils follows a surface catalyzed growth mechanism, while bilayer graphene growth follows an epitaxial growth mechanism. After the formation of a bilayer, the corrugated substrate breaks the planar conjugated π bonds of graphene, inducing a binding configuration change from sp2 to sp3. Then, pristine wrinkles are introduced by the thermal expansion mismatch between graphene and the metal substrates. Finally, the roughness of graphene on the Pt foils is considerably less than that of graphene on Cu foils, and the multifaceted interweaving Pt substrate has almost no effect on the in-plane continuity of graphene.
-
-
[1]
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[2]
(2) Bolotin, K. I.; Sikes, K. J.; Zhang, Z.; Klima, M.; Fudenberg,G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008,146, 351. doi: 10.1016/j.ssc.2008.02.024
-
[3]
(3) Schwierz, F. Nat. Nanotech. 2010, 5, 487. doi: 10.1038/nnano.2010.89
-
[4]
(4) Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.;Chiu, H. Y.; Grill, A.; Avouris, P. Science 2012, 327, 662.
-
[5]
(5) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K.M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.;Ruoff, R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969
-
[6]
(6) Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.;Wang, X. R.;Wang, E. G.; Dai, H. J. Nat. Nanotech. 2008, 3, 538. doi: 10.1038/nnano.2008.210
-
[7]
(7) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.;Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P.N.; de Heer,W. A. J. Phys. Chem. B 2004, 108, 19912. doi: 10.1021/jp040650f
-
[8]
(8) Sutter, P.W.; Flege, J. I.; Sutter, E. A. Nat. Mater. 2008, 7, 406.doi: 10.1038/nmat2166
-
[9]
(9) Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. doi: 10.1021/nl801827v
-
[10]
(10) Li, X. S.; Cai,W.W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.;Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.;Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
-
[11]
(11) Li, X. S.; Zhu, Y.W.; Cai,W.W.; Borysiak, M.; Han, B. Y.;Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Nano Lett.2009, 9, 4359. doi: 10.1021/nl902623y
-
[12]
(12) Gao, L.; Guest, J. R.; Guisinger, N. P. Nano Lett. 2010, 10,3512. doi: 10.1021/nl1016706
-
[13]
(13) Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.;Gao, H. J. Adv. Mater. 2009, 21, 2777. doi: 10.1002/adma.200800761
-
[14]
(14) Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.;Peng, H. L.; Liu, Z. F. ACS Nano 2011, 5, 4014. doi: 10.1021/nn200573v
-
[15]
(15) Ishigami, M.; Chen, J. H.; Cullen,W. G.; Fuhrer, M. S.;Williams, E. D. Nano Lett. 2007, 7, 1643. doi: 10.1021/nl070613a
-
[16]
(16) Xu, K.; Cao, P.; Heath, J. R. Nano Lett. 2009, 9, 4446. doi: 10.1021/nl902729p
-
[17]
(17) Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Nano Lett.2011, 11, 1106. doi: 10.1021/nl104000b
-
[18]
(18) Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang,Y. F.; Liu, Z. F. ACS Nano 2011, 11, 9194.
-
[19]
(19) Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang,Y. F.; Liu, Z. F. Nano Lett. 2011, 11, 297. doi: 10.1021/nl103962a
-
[20]
(20) Zhang, Y. F.; Gao, T.; Xie, S. B.; Dai, B. Y.; Gao, Y. B.; Chen, Y.B.; Liu, M. X. Nano Res. 2012, 5, 402. doi: 10.1007/s12274-012-0221-6
-
[21]
(21) Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.;Liu, Z. F. Nano Res. 2011, 4, 712. doi: 10.1007/s12274-011-0127-8
-
[22]
(22) Meng, L.; Zhang, Y. F.; Yan,W.; Feng, L.; He, L. Dou, R. F.;Nie, J. C. Appl. Phys. Lett. 2012, 100, 091601. doi: 10.1063/1.3691952
-
[23]
(23) Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro, N. A.H.; Reina, A.; Kong, J.; Andrei, E. Y. Nat. Phys. 2010, 4, 109.
-
[24]
(24) Chen, Z. Y.; Yuan, H. T.; Zhang, Y. F.; Nomura, K.; Gao, T.;Gao, Y. B.; Shimotani, H.; Liu, Z. F.; Iwasa, Y. Nano Lett. 2012,12, 2212. doi: 10.1021/nl204012c
-
[25]
(25) Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie,S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. ACS Nano2012, 6, 6562. doi: 10.1021/nn302303n
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[3]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[4]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[8]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[9]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[10]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[11]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[12]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[13]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[14]
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
-
[15]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[16]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[17]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[18]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[19]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[20]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[1]
Metrics
- PDF Downloads(1591)
- Abstract views(2208)
- HTML views(13)