Citation: WANG Bi-Yao, TAN Ning-Xin, YAO Qian, LI Ze-Rong, LI Xiang-Yuan. Accurate Calculation of the Reaction Barriers and Rate Constants of the Pyrolysis of Alkyl Radicals in the β Position Using the Isodesmic Reaction Method[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201209053
-
The isodesmic reaction method is proposed for the accurate calculation of the reaction barriers and rate constants for an important class of reactions in the high-temperature combustion mechanism: the pyrolysis of alkyl radicals in the β position. The reaction barriers were calculated for a representative set of five reactions by two schemes: the first scheme is to calculate the reaction barriers directly from approximate ab initio calculations; and the second scheme is to correct the reaction barriers from the first scheme using the isodesmic reaction method. Ten different levels of ab initio calculations were used, and the absolute average maximum deviations of the reaction barriers by the isodesmic reaction method and direct ab initio calculations were 5.32 and 16.16 kJ·mol-1, respectively, indicating that the isodesmic reaction method does not significantly depend on the level of ab initio theory used. The rate constants of the three representative reactions in the temperature range of 500-2000 K were calculated by the isodesmic reaction method. The average and maximum values of kmax/kmin between the calculated and experimental values were 1.67 and 2.49, respectively. Therefore, the isodesmic reaction method is efficient and reliable for the calculation of the reaction barriers and rate constants of reactions in a class at a modest level of ab initio theory.
-
-
[1]
(1) Lu, T. F.; Law, C. K. Combust. Flame 2006, 144, 24. doi: 10.1016/j.combustflame.2005.02.015
-
[2]
(2) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154, 67.doi: 10.1016/j.combustflame.2007.10.020
-
[3]
(3) Curran, H. J.; Gaffuri, P.; Pitz,W. J. Combust. Flame 1998, 114,149. doi: 10.1016/S0010-2180(97)00282-4
-
[4]
(4) Curran, H. J.; Gaffuri, P.; Pitz,W. J. Combust. Flame 2002, 129,253. doi: 10.1016/S0010-2180(01)00373-X
-
[5]
(5) Knyazev, V. D.; Bencsura, A.; Dubinsky, I. A.; Gutman, D.;Senkan, S. M. Proc. Combust. Inst. 1994, 25, 817.
-
[6]
(6) Knyazev, V. D.; Dubinsky, I. A.; Slagle, I. R.; Gutman, D.J. Phys. Chem. 1994, 98, 5279. doi: 10.1021/j100071a018
-
[7]
(7) Knyazev, V. D.; Dubinsky, I. A.; Slagle, I. R.; Gutman, D.J. Phys. Chem. 1994, 98, 11099. doi: 10.1021/j100094a018
-
[8]
(8) Slagle, I. R.; Batt, L.; Gmurczyk, G.W.; Gutman, D.; Tsang,W.J. Phys. Chem. 1991, 95, 7732. doi: 10.1021/j100173a034
-
[9]
(9) Bencsura, A.; Knyazev, V. D.; Xing, S. B.; Slagle, I. R.;Gutman, D. Proc. Combust. Inst. 1992, 24, 629.
-
[10]
(10) Zheng, X. B.; Blowers, P. Ind. Eng. Chem. Res. 2006, 45, 530.doi: 10.1021/ie0508942
-
[11]
(11) Truong, T. N. J. Chem. Phys. 2000, 113, 4959.
-
[12]
(12) Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A2006, 110, 473. doi: 10.1021/jp051280d
-
[13]
(13) Muszynska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N.J. Phys. Chem. A 2009, 113, 8327. doi: 10.1021/jp903762x
-
[14]
(14) Bankiewicz, B.; Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2009, 113, 1564. doi: 10.1021/jp808874j
-
[15]
(15) Zhang, S.W.; Truong, T. N. J. Phys. Chem. A 2003, 107, 1138.doi: 10.1021/jp021265y
-
[16]
(16) Kungwan, N.; Truong, T. N. J. Phys. Chem. A 2005, 109, 7742.doi: 10.1021/jp051799+
-
[17]
(17) Huynh, L. K.; Truong, T. N. Theor. Chem. Acc. 2008, 120, 107.doi: 10.1007/s00214-007-0311-9
-
[18]
(18) Hehre,W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796. doi: 10.1021/ja00719a006
-
[19]
(19) Radom, L.; Hehre,W. J.; Pople, J. A. J. Am. Chem. Soc. 1971,93, 289. doi: 10.1021/ja00731a001
-
[20]
(20) Wiberg, K. B.; Ochterski, J.W. J. Comput. Chem. 1997, 18, 108.
-
[21]
(21) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021
-
[22]
(22) Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45. doi: 10.1016/S0009-2614(98)00866-5
-
[23]
(23) Halkier, A.; Helgaker, T.; Jorgensen, P. J. Chem. Phys. Lett.1999, 302, 437. doi: 10.1016/S0009-2614(99)00179-7
-
[24]
(24) De Lara-Castells, M. P.; Krems, R. V.; Buchachenko, A. A. J. Chem. Phys. 2001, 115, 10438. doi: 10.1063/1.1415078
-
[25]
(25) Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 118, 3035. doi: 10.1063/1.1534091
-
[26]
(26) Hwang, R.; Park, Y. C.; Lee, J. S. Theor. Chem. Acc. 2006, 115,54. doi: 10.1007/s00214-005-0675-7
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision B.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[28]
(28) Duncan,W. T.; Bell, R. L.; Truong, T. N. J. Comput. Chem.1998, 19, 1039.
-
[29]
(29) Eckart, C. Phys. Rev. 1930, 35, 1303. doi: 10.1103/PhysRev.35.1303
-
[30]
(30) Morganroth,W. E.; Calvert, J. G. J. Am. Chem. Soc. 1966, 88,5387. doi: 10.1021/ja00975a004
-
[31]
(31) Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1996, 100, 5318.doi: 10.1021/jp952229k
-
[32]
(32) Kerr, J. A.; Trotman-Dickenson, A. F. J. Chem. Soc. 1960, 323,1602.
-
[33]
(33) Gierczak, T.; Gawlowski, J.; Niedzielski, J. React. Kinet. Catal. Lett. 1988, 36, 434.
-
[34]
(34) Tsang,W. J. Am. Chem. Soc. 1985, 107, 2872. doi: 10.1021/ja00296a007
-
[35]
(35) Lin, M. C.; Laidler, K. J. Can. J. Chem. 1967, 45, 1315.
-
[36]
(36) Gang, J.; Pilling, M. J.; Robertson, S. H. J. Chem. Soc. Faraday Trans. 1997, 93, 1481. doi: 10.1039/a607566e
-
[37]
(37) Metcalfe, E. L.; Trotman-Dickenson, A. F. J. Chem. Soc. 1960,980, 5072.
-
[38]
(38) Slater, D. H.; Collier, S. S.; Calvert, J. G. J. Am. Chem. Soc.1968, 90, 268. doi: 10.1021/ja01004a010
-
[39]
(39) Douhou, S.; Perrin, D.; Martin, R. J. Chim. Phys. 1994, 91,1628.
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, doi: 10.3866/PKU.DXHX202310117
-
[3]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, doi: 10.12461/PKU.DXHX202403024
-
[4]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, doi: 10.3866/PKU.DXHX202311037
-
[5]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, doi: 10.3866/PKU.DXHX202311057
-
[6]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240072
-
[7]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, doi: 10.12461/PKU.DXHX202403087
-
[8]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, doi: 10.3866/PKU.DXHX202310095
-
[9]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074
-
[10]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202312004
-
[11]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202308072
-
[12]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, doi: 10.3866/PKU.DXHX202308094
-
[13]
Houjin Li , Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, doi: 10.3866/PKU.DXHX202310016
-
[14]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, doi: 10.3866/PKU.DXHX202309001
-
[15]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, doi: 10.3866/PKU.DXHX202310043
-
[16]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202310074
-
[17]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, doi: 10.3866/PKU.DXHX202310039
-
[18]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, doi: 10.3866/PKU.DXHX202401060
-
[19]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, doi: 10.3866/PKU.DXHX202401005
-
[20]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, doi: 10.3866/PKU.DXHX202401031
-
[1]
Metrics
- PDF Downloads(792)
- Abstract views(1708)
- HTML views(22)