Citation: LI Hong-Bo, ZHANG Jing, JIN He-Hua, LI Qing-Wen. Separation Techniques of Single-Walled Carbon Nanotubes with Single Electrical Type and Chirality[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2447-2455. doi: 10.3866/PKU.WHXB201209041 shu

Separation Techniques of Single-Walled Carbon Nanotubes with Single Electrical Type and Chirality

  • Received Date: 4 July 2012
    Available Online: 4 September 2012

    Fund Project: 苏州市科技项目(SYG201018) (SYG201018)江苏省产学研联合创新资金项目(BY2011178)资助 (BY2011178)

  • Based on the solution post-synthesis method, we reviewed the process in the separation techniques of single-walled carbon nanotubes (SWCNTs) with single electrical type and chirality. We demonstrated the separation mechanism of SWCNTs by the different methods and comparatively pointed out their merits and disadvantages in purity, efficiency, cost, and scalability etc. Furthermore, some prospects for future study and application were proposed.

  • 加载中
    1. [1]

      (1) Zhang, D. H.; Ryu, K.; Liu, X. L.; Polikarpov, E.; Ly, J.;Tompson, M. E.; Zhou, C.W. Nano Lett. 2006, 6, 1880. doi: 10.1021/nl0608543

    2. [2]

      (2) Blackburn, J. L.; Barnes, T. M.; Beard, M. C.; Kim, Y. H.;Tenent, R. C.; McDonald, T. J.; To, B.; Coutts, T. J.; Heben, M.J. ACS Nano 2008, 2, 1266. doi: 10.1021/nn800200d

    3. [3]

      (3) Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Nano Lett.2004, 4, 35. doi: 10.1021/nl034841q

    4. [4]

      (4) Kong, J.; Franklin, N. R.; Zhou, C.W.; Chapline, M. G.; Peng,S.; Cho, K. J.; Dai, H. J. Science 2000, 287, 622. doi: 10.1126/science.287.5453.622

    5. [5]

      (5) Javey, A.; Guo, J.;Wang, Q.; Lundstrom, M.; Dai, H. J. Nature2003, 424, 654. doi: 10.1038/nature01797

    6. [6]

      (6) Wind, S. J.; Appenzeller, J.; Avouris, P. Phys. Rev. Lett. 2003,91, 058301. doi: 10.1103/PhysRevLett.91.058301

    7. [7]

      (7) Li, Y. M.; Mann, D.; Rolandi, M.; Kim,W.; Ural, A.; Hung, S.;Javey, A.; Cao, J.;Wang, D.W.; Yenilmez, E.;Wang, Q.;Gibbons, J. F.; Nishi, Y.; Dai, H. J. Nano Lett. 2004, 4, 317. doi: 10.1021/nl035097c

    8. [8]

      (8) Qu, L. T.; Du, F.; Dai, L. M. Nano Lett. 2008, 8, 2682. doi: 10.1021/nl800967n

    9. [9]

      (9) Hong, G.; Zhang, B.; Peng, B. H.; Zhang, J.; Choi,W. M.; Choi,J. Y.; Kim, J. M.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131, 14642.doi: 10.1021/ja9068529

    10. [10]

      (10) Ding, L.; Tselev, A.;Wang, J.; Yuan, D.; Chu, H.; McNicholas,T. P.; Li, Y.; Liu, J. Nano Lett. 2009, 9, 800. doi: 10.1021/nl803496s

    11. [11]

      (11) Xu, Z.; Lu,W. G.;Wang,W. L.; Gu, C. Z.; Liu, K. H.; Bai, X.D.;Wang, E. G.; Dai, H. J. Adv. Mater. 2008, 20, 3615. doi: 10.1002/adma.v20:19

    12. [12]

      (12) Yao, Y. G.; Feng, C. Q.; Zhang, J.; Liu, Z. F. Nano Lett. 2009, 9,1673. doi: 10.1021/nl900207v

    13. [13]

      (13) Yu, X. C.; Zhang, J.; Choi,W.; Choi, J. Y.; Kim, J. M.; Gan, L.B.; Liu, Z. F. Nano Lett. 2010, 10, 3343. doi: 10.1021/nl1010178

    14. [14]

      (14) Collins, P. C.; Arnold, M. S.; Avouris, P. Science 2001, 292, 706.doi: 10.1126/science.1058782

    15. [15]

      (15) Hassanien, A.; Tokumoto, M.; Umek, P.; Vrbanic, D.; Mozetic,M.; Mihailovic, D.; Venturini, P.; Pejovnik, S. Nanotechnology2005, 16, 278. doi: 10.1088/0957-4484/16/2/017

    16. [16]

      (16) Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F.Journal of Physical Chemistry C 2008, 112, 3849. doi: 10.1021/jp710691j

    17. [17]

      (17) Huang, H. J.; Maruyama, R.; Noda, K.; Kajiura, H.; Kadono, K.J. Phys. Chem. B 2006, 110, 7316.

    18. [18]

      (18) Zhang, H. L.; Liu, Y. Q.; Cao, L. C.;Wei, D. C.;Wang, Y.;Kajiura, H.; Li, Y. M.; Noda, K.; Luo, G. F.;Wang, L.; Zhou, J.;Lu, J.; Gao, Z. X. Adv. Mater. 2009, 21, 813. doi: 10.1002/adma.v21:7

    19. [19]

      (19) Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P.W.; Allen,M. J.; Shan, H.W.; Kittrell, C.; Hauge, R. H.; Tour, J. M.;Smalley, R. E. Science 2003, 301, 1519. doi: 10.1126/science.1087691

    20. [20]

      (20) Doyle, C. D.; Rocha, J. D. R.;Weisman, R. B.; Tour, J. M.J. Am. Chem. Soc. 2008, 130, 6795. doi: 10.1021/ja800198t

    21. [21]

      (21) An, K. H.; Park, J. S.; Yang, C. M.; Jeong, S. Y.; Lim, S. C.;Kang, C.; Son, J. H.; Jeong, M. S.; Lee, Y. H. J. Am. Chem. Soc.2005, 127, 5196. doi: 10.1021/ja0428199

    22. [22]

      (22) Banerjee, S.;Wong, S. S. J. Am. Chem. Soc. 2004, 126, 2073.doi: 10.1021/ja038111w

    23. [23]

      (23) Menard-Moyon, C.; Izard, N.; Doris, E.; Mioskowski, C. J. Am. Chem. Soc. 2006, 128, 6552. doi: 10.1021/ja060802f

    24. [24]

      (24) Kamaras, K.; Itkis, M. E.; Hu, H.; Zhao, B.; Haddon, R. C.Science 2003, 301, 1501. doi: 10.1126/science.1088083

    25. [25]

      (25) Chattopadhyay, D.; Galeska, L.; Papadimitrakopoulos, F. J. Am. Chem. Soc. 2003, 125, 3370. doi: 10.1021/ja028599l

    26. [26]

      (26) Chen, Z. H.; Du, X.; Du, M. H.; Rancken, C. D.; Cheng, H. P.;Rinzler, A. G. Nano Lett. 2003, 3, 1245. doi: 10.1021/nl0344763

    27. [27]

      (27) Li, H. P.; Zhou, B.; Lin, Y.; Gu, L. R.;Wang,W.; Fernando, K.A. S.; Kumar, S.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc.2004, 126, 1014. doi: 10.1021/ja037142o

    28. [28]

      (28) Ju, S. Y.; Doll, J.; Sharma, I.; Papadimitrakopoulos, F. Nature Nanotechnology 2008, 3, 356. doi: 10.1038/nnano.2008.148

    29. [29]

      (29) Wang, F.; Matsuda, K.; Rahman, A. F. M. M.; Peng, X. B.;Kimura, T.; Komatsu, N. J. Am. Chem. Soc. 2010, 132, 10876.doi: 10.1021/ja1044677

    30. [30]

      (30) Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Nature Nanotechnology 2007, 2, 640.

    31. [31]

      (31) Lee, H.W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L.S.;Wang, H. L.; Morishita, S.; Patil, N.; Park, Y. J.; Park, J. J.;Spakowitz, A.; Galli, G.; Gygi, F.;Wong, P. H. S.; Tok, J. B. H.;Kim, J. M.; Bao, Z. A. Nature Communications 2011, 2, 541.doi: 10.1038/ncomms1545

    32. [32]

      (32) Wang,W. Z.; Li,W. F.; Pan, X. Y.; Li, C. M.; Li, L. J.; Mu, Y.G.; Rogers, J. A.; Chan-Park, M. B. Adv. Funct. Mater. 2011, 21,1643. doi: 10.1002/adfm.201002278

    33. [33]

      (33) Gao, J.; Kwak, M.;Wildeman, J.; Hermann, A.; Loi, M. A.Carbon 2011, 49, 333. doi: 10.1016/j.carbon.2010.09.036

    34. [34]

      (34) Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes,M. M.; Mayor, M. Macromolecules 2012, 45, 713. doi: 10.1021/ma201890g

    35. [35]

      (35) Imin, P.; Imit, M.; Adronov, A. Macromolecules 2011, 44, 9138.doi: 10.1021/ma201610y

    36. [36]

      (36) Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M.Science 2003, 301, 344. doi: 10.1126/science.1086534

    37. [37]

      (37) Shin, D. H.; Kim, J. E.; Shim, H. C.; Song, J.W.; Yoon, J. H.;Kim, J.; Jeong, S.; Kang, J.; Baik, S.; Han, C. S. Nano Lett.2008, 8, 4380. doi: 10.1021/nl802237m

    38. [38]

      (38) Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Nano Lett. 2005, 5,713. doi: 10.1021/nl050133o

    39. [39]

      (39) Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam,M. C. Nature Nanotechnology 2006, 1, 60. doi: 10.1038/nnano.2006.52

    40. [40]

      (40) Antaris, A. L.; Seo, J.W. T.; Green, A. A.; Hersam, M. C. ACS Nano 2010, 4, 4725. doi: 10.1021/nn101363m

    41. [41]

      (41) Green, A. A.; Duch, M. C.; Hersam, M. C. Nano Research 2009,2, 69. doi: 10.1007/s12274-009-9006-y

    42. [42]

      (42) Zhao, P.; Einarsson, E.; Xiang, R.; Murakami, Y.; Maruyama, S.Journal of Physical Chemistry C 2010, 114, 4831.

    43. [43]

      (43) Ghosh, S.; Bachilo, S. M.;Weisman, R. B. Nature Nanotechnology 2010, 5, 443. doi: 10.1038/nnano.2010.68

    44. [44]

      (44) Zheng, M.; Ja ta, A.; Semke, E. D.; Diner, B. A.; Mclean, R.S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nature Materials 2003, 2, 338. doi: 10.1038/nmat877

    45. [45]

      (45) Zheng, M.; Ja ta, A.; Strano, M. S.; Santos, A. P.; Barone, P.;Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.;Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.;Walls, D. J. Science 2003, 302, 1545. doi: 10.1126/science.1091911

    46. [46]

      (46) Zheng, M.; Semke, E. D. J. Am. Chem. Soc. 2007, 129, 6084.doi: 10.1021/ja071577k

    47. [47]

      (47) Zhang, L.; Zaric, S.; Tu, X. M.;Wang, X. R.; Zhao,W.; Dai, H.J. J. Am. Chem. Soc. 2008, 130, 2686. doi: 10.1021/ja7106492

    48. [48]

      (48) Tu, X. M.; Manohar, S.; Ja ta, A.; Zheng, M. Nature 2009,460, 250. doi: 10.1038/nature08116

    49. [49]

      (49) Tanaka, T.; Jin, H. H.; Miyata, Y.; Kataura, H. Applied Physics Express 2008, 1, 114001. doi: 10.1143/APEX.1.114001

    50. [50]

      (50) Tanaka, T.; Jin, H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.;Minari, T.; Miyadera, T.; Tsuka shi, K.; Kataura, H. Nano Lett.2009, 9, 1497. doi: 10.1021/nl8034866

    51. [51]

      (51) Zhang, J.;Wen, X. N.; Li, H. B.; Jin, H. H.; Song, Q. J.; Li, Q.W. Chemical Journal of Chinese Universities 2010, 31, 2190.[张静, 温晓南, 李红波, 金赫华, 宋启军, 李清文. 高等学校化学学报, 2010, 31, 2190.]

    52. [52]

      (52) Wen, X. N.; Zhang, J.; Gu,W. X.; Jin, H. H.; Li, H. B.; Li, Q.W. Acta Physico-Chimica Sinica 2010, 26, 2757. [温晓南,张静, 顾文秀, 金赫华, 李红波, 李清文. 物理化学学报,2010, 26, 2757.] doi: 10.3866/PKU.WHXB20100932

    53. [53]

      (53) Li, H. B.; Jin, H. H.; Zhang, J.;Wen, X. N.; Song, Q. J.; Li, Q.W. Journal of Physical Chemistry C 2010, 114, 19234. doi: 10.1021/jp106869r

    54. [54]

      (54) Tanaka, T.; Urabe, Y.; Nishide, D.; Kataura, H. J. Am. Chem. Soc. 2011, 133, 17610. doi: 10.1021/ja208221g

    55. [55]

      (55) Silvera-Batista, C. A.; Scott, D. C.; McLeod, S. M.; Ziegler, K.J. Journal of Physical Chemistry C 2011, 115, 9361. doi: 10.1021/jp111349x

    56. [56]

      (56) Tanaka, T.; Urabe, Y.; Nishide, D.; Kataura, H. Applied Physics Express 2009, 2, 125002. doi: 10.1143/APEX.2.125002

    57. [57]

      (57) Tanaka, T.; Urabe, Y.; Nishide, D.; Liu, H. P.; Asano, S.;Nishiyama, S.; Kataura, H. Physica Status Solidi B-Basic Solid State Physics 2010, 247, 2867. doi: 10.1002/pssb.v247.11/12

    58. [58]

      (58) Moshammer, K.; Hennrich, F.; Kappes, M. M. Nano Research2009, 2, 599. doi: 10.1007/s12274-009-9057-0

    59. [59]

      (59) Liu, H.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Journal of Physical Chemistry C 2010, 114, 9270.

    60. [60]

      (60) Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Nature Communications 2011, 2, 309. doi: 10.1038/ncomms1313

    61. [61]

      (61) Gui, H.; Li, H. B.; Tan, F. R.; Jin, H. H.; Zhang, J.; Li, Q.W.Carbon 2012, 50, 332. doi: 10.1016/j.carbon.2011.08.034

    62. [62]

      (62) Zhang, J.; Tan, F.; Li, H.; Jin, H.; Li, Q. Physica Status Solidi (RRL) - Rapid Research Letters 2012, 6, 250. doi: 10.1002/pssr.v6.6

    63. [63]

      (63) LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y.W.; Kim, J.M.; Bao, Z. N. Science 2008, 321, 101. doi: 10.1126/science.1156588

    64. [64]

      (64) Hong, G.; Zhou, M.; Zhang, R. O. X.; Hou, S. M.; Choi,W.;Woo, Y. S.; Choi, J. Y.; Liu, Z. F.; Zhang, J. Angewandte Chemie-International Edition 2011, 50, 6819. doi: 10.1002/anie.201101700

    65. [65]

      (65) Kim, H. J.; Hwang, S.; Oh, J.; Chang, Y.W.; Lim, E. K.; Haam,S.; Kim, C. S.; Yoo, K. H. Nanotechnology 2011, 22, 045703.doi: 10.108810957-4484122141045703


  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    5. [5]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    9. [9]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

Metrics
  • PDF Downloads(785)
  • Abstract views(1948)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return