Citation: LONG Ming-Ce, WAN Lei, ZENG Ceng, LIU Yi-Yi, CHEN Yuan-Yuan. Enhanced Visible Light Activity of BiVO4 by Treating in HCl Aqueous Solution and Its Mechanism[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201209032
-
Enhanced photocatalytic activity of BiVO4 has been achieved by immersing in HCl aqueous solution. After treated for 6 h in 0.1 mol·L-1 HCl solution, the visible light activity of BiVO4 for phenol degradation increased by 3.5 times. X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) were carried out to analyze the crystal components and surface morphology of the treated samples. Comparison of samples treated in different acids and chlorides indicated that with the appropriate concentrations of H+ and Cl- ions, BiVO4 partially dissolved, was deposited as BiOCl, and finally a composite of flaked BiOCl and micro-particles of BiVO4 with pits formed over the surface. The flatband potential of BiOCl was measured by a slurry method. According to the results of energy band analyses and photocatalytic activity tests of mixed BiVO4 and BiOCl particles, there is no interparticle electron transfer effect between them. Therefore, the mechanism of the enhanced photocatalytic performance of the treated BiVO4 can be attributed to the unevenness of the surface, which can facilitate photogenerated charge separation. This type of surface treatment method could be developed into an effective method for preparing photocatalysts with enhanced photocatalytic performance.
-
-
[1]
(1) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53,229. doi: 10.1023/A:1019034728816
-
[2]
(2) Kohtani, S.; Makino, S.; Kudo, A.; Tokumura, K.; Ishigaki, Y.;Matsunaga, T.; Nikaido, O.; Hayakawa, K.; Nakagaki, R. Chem. Lett. 2002, 31, 660.
-
[3]
(3) Kohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R. Appl. Catal. B: Environ. 2005, 58, 265. doi: 10.1016/j.apcatb.2004.12.007
-
[4]
(4) Zhou, L.;Wang,W. Z.; Liu, S.W.; Zhang, L. S.; Xu, H. L.; Zhu,W. J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052
-
[5]
(5) Zhang, L.; Chen, D. R.; Jiao, X. L. J. Phys. Chem. B 2006, 110,2668. doi: 10.1021/jp056367d
-
[6]
(6) Wang, D.; Jiang, H.; Zong, X.; Xu, Q.; Ma, Y.; Li, G.; Li, C.Chem. Eur. J. 2011, 17, 1275. doi: 10.1002/chem.v17.4
-
[7]
(7) Xi, G.; Ye, J. Chem. Commun. 2010, 46, 1893.
-
[8]
(8) Cheng, B.;Wang,W. G.; Shi, L.; Zhang, J.; Ran, J. R.; Yu, H. G.Int. J. Photoenergy 2012, 797968.
-
[9]
(9) Ren, L.; Jin, L.;Wang, J. B.; Yang, F.; Qiu, M. Q.; Yu, Y.Nanotechnology 2009, 20, 115603. doi: 10.1088/0957-4484/20/11/115603
-
[10]
(10) Jiang, H. Y.; Dai, H. X.; Meng, X.; Zhang, L.; Deng, J. G.; Ji, K.M. Chin. J. Catal. 2011, 32, 939. [蒋海燕, 戴洪兴, 孟雪,张磊, 邓积光, 吉科猛. 催化学报, 2011, 32, 939.] doi: 10.1016/S1872-2067(10)60215-X
-
[11]
(11) Long, M. C.; Cai,W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.;Wu,Y. H. J. Phys. Chem. B 2006, 110, 20211. doi: 10.1021/jp063441z
-
[12]
(12) Long, M. C.; Cai,W. M.; Kisch, H. J. Phys. Chem. C 2008, 112,548. doi: 10.1021/jp075605x
-
[13]
(13) Long, M. C.; Jiang, J. J.; Li, Y.; Cao, R. Q.; Zhang, L. Y.; Cai,W. M. Nano-Micro Lett. 2011, 3, 171.
-
[14]
(14) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y.; Loo, S. C.; Xue, C.ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
-
[15]
(15) Huang,W. L.; Zhu, Q. S. J. Comput. Chem. 2008, 30, 183.
-
[16]
(16) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C2008, 112, 747. doi: 10.1021/jp077471t
-
[17]
(17) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.;Yang, K. Acta Phys. -Chim . Sin. 2012, 28, 647. [余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu, Y. J., 杨凯. 物理化学学报,2012, 28, 647.] doi: 10.3866//PKU.WHXB201201051
-
[18]
(18) Wang,W.; Huang, F.; Lin, X. Scripta Mater. 2007, 56, 669. doi: 10.1016/j.scriptamat.2006.12.023
-
[19]
(19) Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung,D.; Lee,W. I. J. Catal. 2009, 262, 144. doi: 10.1016/j.jcat.2008.12.020
-
[20]
(20) Chang, X.; Yu, G.; Huang, J.; Li, Z.; Zhu, S.; Yu, P.; Cheng, C.;Deng, S.; Ji, G. Catal. Today 2010, 153, 193. doi: 10.1016/j.cattod.2010.02.069
-
[21]
(21) Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Chem. Rev.2012, 112, 1555. doi: 10.1021/cr100454n
-
[22]
(22) Roy, A. M.; De, G. C.; Sasmal, N.; Bhattacharyya, S. S. Int. J. Hydrog. Energy 1995, 20, 627. doi: 10.1016/0360-3199(94)00105-9
-
[23]
(23) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27, 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报, 2011, 27,2946.] doi: 10.3866/PKU.WHXB20112946
-
[24]
(24) Kudo, A.; Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121,11459. doi: 10.1021/ja992541y
-
[25]
(25) Dean, J. A. Lange's Chemistry Handbook, 13rd ed.; SciencePress: Beijing, 1991; p 9-9; translated by Sang, J. F., Cao, S. J.,Xing,W. M., Zheng, F. Y., Lu, X. M. [Dean, J. A. 兰氏化学手册. 尚久方, 操时杰, 辛无名, 郑飞勇, 陆晓明, 林长青译. 北京:科学出版社, 1991: 9-9.]
-
[26]
(26) Robert, D. Catal. Today 2007, 122, 20. doi: 10.1016/j.cattod.2007.01.060
-
[27]
(27) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
-
[28]
(28) Iwase, A.; Kato, H.; Okutomi, H.; Kudo, A. Chem. Lett. 2004,33, 1260. doi: 10.1246/cl.2004.1260
-
[1]
-
-
[1]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230314
-
[2]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230225
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202403009
-
[4]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202405016
-
[5]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202404030
-
[6]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407014
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202403005
-
[8]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202405019
-
[9]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406019
-
[11]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406021
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240037
-
[13]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, doi: 10.3866/PKU.DXHX202311028
-
[14]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, doi: 10.3866/PKU.DXHX202311101
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408005
-
[16]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230398
-
[17]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407012
-
[18]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230346
-
[19]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310013
-
[20]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230435
-
[1]
Metrics
- PDF Downloads(867)
- Abstract views(2311)
- HTML views(14)