Citation: LI Hui, PENG Hai-Lin, LIU Zhong-Fan. Two-Dimensional Nanostructures of Topological Insulators and Their Devices[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2423-2435. doi: 10.3866/PKU.WHXB201208312 shu

Two-Dimensional Nanostructures of Topological Insulators and Their Devices

  • Received Date: 27 July 2012
    Available Online: 31 August 2012

    Fund Project: 国家自然科学基金(51121091, 21173004, 11104003) (51121091, 21173004, 11104003)国家重大科学研究计划(2011CB921904)资助项目 (2011CB921904)

  • Three-dimensional (3D) topological insulators are a new state of quantum matter that are insulating in the bulk but have current-carrying massless Dirac surface states. Nanostructured topological insulators, such as quasi-two-dimensional (2D) nanoribbons, nanoplates, and ultrathin films with extremely large surface-to-volume ratios, distinct edge/surface effects, and unique physicochemical properties, can have a large impact on fundamental research as well as in applications such as electronics, spintronics, photonics, and the energy sciences. Few-layer topological insulator nanostructures have very large surface-to-volume ratios that can significantly enhance the contribution of exotic surface states, and their unique quasi-2D geometry also facilitates their integration into functional devices for manipulation and manufacturing. Here, we present our recent results on the controlled growth of quasi-2D nanostructures of topological insulators, as well as their novel functional devices. High quality quasi-2D nanostructures of Bi2Se3 and Bi2Te3 topological insulators have been synthesized by vapor-phase growth. Ultra-thin nanoplates of the topological insulators with uniform thickness down to a single layer have been grown on various substrates, including conductive graphene. A facile, high-yield method has been developed for growing single-crystal nanoplate arrays of Bi2Se3 and Bi2Te3 with well-aligned orientations, controlled thickness, and specific placement on mica substrates by van der Waals epitaxy. A systematic spectroscopic study, including angle-resolved photoemission spectroscopy (ARPES), micro-Raman spectroscopy, and micro-infrared spectroscopy, was carried out to investigate the quasi-2D nanostructures of topological insulators. Pronounced Aharonov-Bohm (AB) interference effects were observed in the topological insulator nanoribbons, providing direct transport evidence of the robust, conducting surface states. Transport measurements of a single nanoplate device, with a high-k dielectric top gate, showed a significant decrease in the carrier concentration and a large tuning of the chemical potential with electrical gating. We also present the first experimental demonstration of near-infrared transparent flexible electrodes based on few-layer topological insulator Bi2Se3 nanostructures that was epitaxially grown on a mica substrate by van der Waals epitaxy. Topological insulator nanostructures show promise as transparent flexible electrodes because of their od near-infrared transparency and excellent conductivity, which is robust against surface contamination and bending. Our studies suggest that quasi-2D nanostructures of topological insulators show promise for future electronic and optoelectronic applications.

  • 加载中
    1. [1]

      (1) Moore, J. E. Naure 2010, 464, 194.

    2. [2]

      (2) Moore, J. E. Nature Physics 2009, 5, 378.

    3. [3]

      (3) Kong, D.; Cui, Y. Nature Chemistry 2011, 3, 845. doi: 10.1038/nchem.1171

    4. [4]

      (4) Hasan, M. Z.; Kane, C. L. Reviews of Modern Physics 2010, 82,3045. doi: 10.1103/RevModPhys.82.3045

    5. [5]

      (5) Qi, X. L.; Zhang, S. C. Physics Today 2010, 63, 23.

    6. [6]

      (6) Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Science 2006, 314,1757. doi: 10.1126/science.1133734

    7. [7]

      (7) Fu, L.; Kane, C. L.; Mele, E. J. Physical Review Letters 2007,98, 106803. doi: 10.1103/PhysRevLett.98.106803

    8. [8]

      (8) Moore, J. E.; Balents, L. Physical Review B 2007, 75, 121306.doi: 10.1103/PhysRevB.75.121306

    9. [9]

      (9) Qi, X. L.; Hughes, T. L.; Zhang, S. C. Physical Review B 2008,78, 195424. doi: 10.1103/PhysRevB.78.195424

    10. [10]

      (10) König, M.;Wiedmann, S.; Brune, C.; Roth, A.; Buhmann, H.;Molenkamp, L.W.; Qi, X. L.; Zhang, S. C. Science 2007, 318,766. doi: 10.1126/science.1148047

    11. [11]

      (11) Bernevig, B. A.; Zhang, S. C. Physical Review Letters 2006, 96,106802. doi: 10.1103/PhysRevLett.96.106802

    12. [12]

      (12) Roth, A.; Brüne, C.; Buhmann, H.; Molenkamp, L.W.;Maciejko, J.; Qi, X. L.; Zhang, S. C. Science 2009, 325, 294.doi: 10.1126/science.1174736

    13. [13]

      (13) Fu, L.; Kane, C. L. Physical Review B 2007, 76, 045302. doi: 10.1103/PhysRevB.76.045302

    14. [14]

      (14) Hsieh, D.; Qian, D.;Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.;Hasan, M. Z. Nature 2008, 452, 970. doi: 10.1038/nature06843

    15. [15]

      (15) Hsieh, D.; Xia, Y.;Wray, L.; Qian, D.; Pal, A.; Dil, J. H.;Osterwalder, J.; Meier, F.; Bihlmayer, G.; Kane, C. L.; Hor, Y.S.; Cava, R. J.; Hasan, M. Z. Science 2009, 323, 919. doi: 10.1126/science.1167733

    16. [16]

      (16) Zhang, H.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C.Nature Physics 2009, 5, 438. doi: 10.1038/nphys1270

    17. [17]

      (17) Xia, Y.; Qian, D.; Hsieh, D.;Wray, L.; Pal, A.; Lin, H.; Bansil,A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Nature Physics 2009, 5, 398. doi: 10.1038/nphys1274

    18. [18]

      (18) Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.;Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z.; Zhang, S.C.; Fisher, I. R.; Hussain, Z.; Shen, Z. X. Science 2009, 325,178.

    19. [19]

      (19) Lin, H.;Wray, L. A.; Xia, Y.; Xu, S.; Jia, S.; Cava, R. J.; Bansil,A.; Hasan, M. Z. Nature Materials 2010, 9, 546. doi: 10.1038/nmat2771

    20. [20]

      (20) Xiao, D.; Yao, Y.; Feng,W.;Wen, J.; Zhu,W.; Chen, X. Q.;Stocks, G. M.; Zhang, Z. Physical Review Letters 2010, 105,096404. doi: 10.1103/PhysRevLett.105.096404

    21. [21]

      (21) Feng,W.; Xiao, D.; Ding, J.; Yao, Y. Physical Review Letters2011, 106, 016402. doi: 10.1103/PhysRevLett.106.016402

    22. [22]

      (22) Yang, K.; Setyawan,W.;Wang, S.; Buongiorno Nardelli, M.;Curtarolo, S. Nature Materials 2012, 11, 614. doi: 10.1038/nmat3332

    23. [23]

      (23) Chadov, S.; Qi, X.; Kübler, J.; Fecher, G. H.; Felser, C.; Zhang,S. C. Nature Materials 2010, 9, 541. doi: 10.1038/nmat2770

    24. [24]

      (24) Peng, H.; Lai, K.; Kong, D.; Meister, S.; Chen, Y.; Qi, X. L.;Zhang, S. C.; Shen, Z. X.; Cui, Y. Nature Materials 2010, 9, 225.

    25. [25]

      (25) Fu, L. Physical Review Letters 2009, 103, 266801. doi: 10.1103/PhysRevLett.103.266801

    26. [26]

      (26) Hsieh, D.; Xia, Y.; Qian, D.;Wray, L.; Dil, J. H.; Meier, F.;Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.;Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava,R. J.; Hasan, M. Z. Nature 2009, 460, 1101.

    27. [27]

      (27) Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J.G.; Yazdani, A.; Hasan, M. Z.; Ong, N. P.; Cava, R. J. Physical Review B 2009, 79, 195208.

    28. [28]

      (28) Wang, Z. Y.; Lin, T.;Wei, P.; Liu, X. F.; Dumas, R.; Liu, K.; Shi,J. Applied Physics Letters 2010, 97, 042112. doi: 10.1063/1.3473778

    29. [29]

      (29) Analytis, J. G.; McDonald, R. D.; Riggs, S. C.; Chu, J. H.;Boebinger, G. S.; Fisher, I. R. Nature Physics 2010, 6, 960. doi: 10.1038/nphys1861

    30. [30]

      (30) Kuroda, K.; Arita, M.; Miyamoto, K.; Ye, M.; Jiang, J.; Kimura,A.; Krasovskii, E. E.; Chulkov, E. V.; Iwasawa, H.; Okuda, T.;Shimada, K.; Ueda, Y.; Namatame, H.; Taniguchi, M. Physical Review Letters 2010, 105, 076802. doi: 10.1103/PhysRevLett.105.076802

    31. [31]

      (31) Xiu, F. X.; He, L. A.;Wang, Y.; Cheng, L. N.; Chang, L. T.;Lang, M. R.; Huang, G. A.; Kou, X. F.; Zhou, Y.; Jiang, X.W.;Chen, Z. G.; Zou, J.; Shailos, A.;Wang, K. L. Nature Nanotechnology 2011, 6, 216. doi: 10.1038/nnano.2011.19

    32. [32]

      (32) Butch, N. P.; Kirshenbaum, K.; Syers, P.; Sushkov, A. B.;Jenkins, G. S.; Drew, H. D.; Paglione, J. Physical Review B2010, 81, 241301. doi: 10.1103/PhysRevB.81.241301

    33. [33]

      (33) Checkelsky, J. G.; Hor, Y. S.; Liu, M. H.; Qu, D. X.; Cava, R. J.;Ong, N. P. Physical Review Letters 2009, 103, 246601. doi: 10.1103/PhysRevLett.103.246601

    34. [34]

      (34) Ran, Y.; Zhang, Y.; Vishwanath, A. Nature Physics 2009, 5, 298.doi: 10.1038/nphys1220

    35. [35]

      (35) Li, H.; Peng, H.; Dang,W.; Yu, L.; Liu, Z. F. Frontiers of Physics 2012, 7, 208. doi: 10.1007/s11467-011-0199-7

    36. [36]

      (36) Teweldebrhan, D.; yal, V.; Balandin, A. A. Nano Letters2010, 10, 1209. doi: 10.1021/nl903590b

    37. [37]

      (37) Sacepe, B.; Oostinga, J. B.; Li, J.; Ubaldini, A.; Couto, N. J. G.;Giannini, E.; Morpur , A. F. Nat. Commun. 2011, 2, 575. doi: 10.1038/ncomms1586

    38. [38]

      (38) Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.;Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.;Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.;Wang, J.J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.;Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen,K.; McComb, D.W.; Nellist, P. D.; Nicolosi, V. Science 2011,331, 568. doi: 10.1126/science.1194975

    39. [39]

      (39) Ren, L.; Qi, X.; Liu, Y. D.; Hao, G. L.; Huang, Z. Y.; Zou, X.H.; Yang, L.W.; Li, J.; Zhong, J. X. J. Mater. Chem. 2012, 22,4921. doi: 10.1039/c2jm15973b

    40. [40]

      (40) Hong, S. S.; Kundhikanjana,W.; Cha, J. J.; Lai, K. J.; Kong, D.S.; Meister, S.; Kelly, M. A.; Shen, Z. X.; Cui, Y. Nano Letters2010, 10, 3118. doi: 10.1021/nl101884h

    41. [41]

      (41) Zhang, G.; Qin, H.; Chen, J.; He, X.; Lu, L.; Li, Y.;Wu, K.Advanced Functional Materials 2011, 21, 2351. doi: 10.1002/adfm.v21.12

    42. [42]

      (42) Chen, X.; Ma, X. C.; He, K.; Jia, J. F.; Xue, Q. K. Adv. Mater.2011, 23, 1162. doi: 10.1002/adma.201003855

    43. [43]

      (43) Li, Y. Y.;Wang, G. A.; Zhu, X. G.; Liu, M. H.; Ye, C.; Chen, X.;Wang, Y. Y.; He, K.;Wang, L. L.; Ma, X. C.; Zhang, H. J.; Dai,X.; Fang, Z.; Xie, X. C.; Liu, Y.; Qi, X. L.; Jia, J. F.; Zhang, S.C.; Xue, Q. K. Adv. Mater. 2010, 22, 4002. doi: 10.1002/adma.201000368

    44. [44]

      (44) Song, C. L.;Wang, Y. L.; Jiang, Y. P.; Zhang, Y.; Chang, C. Z.;Wang, L. L.; He, K.; Chen, X.; Jia, J. F.;Wang, Y. Y.; Fang, Z.;Dai, X.; Xie, X. C.; Qi, X. L.; Zhang, S. C.; Xue, Q. K.; Ma, X.C. Applied Physics Letters 2010, 97, 143118. doi: 10.1063/1.3494595

    45. [45]

      (45) Zhang, G. H.; Qin, H. J.; Teng, J.; Guo, J. D.; Guo, Q. L.; Dai,X.; Fang, Z.;Wu, K. H. Applied Physics Letters 2009, 95,053114. doi: 10.1063/1.3200237

    46. [46]

      (46) Kong, D. S.; Randel, J. C.; Peng, H. L.; Cha, J. J.; Meister, S.;Lai, K. J.; Chen, Y. L.; Shen, Z. X.; Manoharan, H. C.; Cui, Y.Nano Letters 2010, 10, 329. doi: 10.1021/nl903663a

    47. [47]

      (47) Li, H.; Cao, J.; Zheng,W.; Chen, Y.;Wu, D.; Dang,W.;Wang,K.; Peng, H.; Liu, Z. F. Journal of the American Chemical Society 2012, 134, 6132. doi: 10.1021/ja3021395

    48. [48]

      (48) Dang,W.; Peng, H.; Li, H.;Wang, P.; Liu, Z. F. Nano Letters2010, 10, 2870. doi: 10.1021/nl100938e

    49. [49]

      (49) Kong, D. S.; Dang,W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng,H.; Liu, Z. F.; Cui, Y. Nano Letters 2010, 10, 2245. doi: 10.1021/nl101260j

    50. [50]

      (50) Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J. S.; Kang, C.Y.; Jeong, U. Journal of the American Chemical Society 2012,134, 2872. doi: 10.1021/ja209991z

    51. [51]

      (51) Zhang, J.; Peng, Z.; Soni, A.; Zhao, Y.; Xiong, Y.; Peng, B.;Wang, J.; Dresselhaus, M. S.; Xiong, Q. Nano Letters 2011, 11,2407.

    52. [52]

      (52) Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.;Wang, L. L.;Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan,W. Y.; Shen, S. Q.;Niu, Q.; Qi, X. L.; Zhang, S. C.; Ma, X. C.; Xue, Q. K. Nature Physics 2010, 6, 584. doi: 10.1038/nphys1689

    53. [53]

      (53) Cheng, P.; Song, C.; Zhang, T.; Zhang, Y.;Wang, Y.; Jia, J. F.;Wang, J.;Wang, Y.; Zhu, B. F.; Chen, X.; Ma, X.; He, K.;Wang,L.; Dai, X.; Fang, Z.; Xie, X.; Qi, X. L.; Liu, C. X.; Zhang, S.C.; Xue, Q. K. Physical Review Letters 2010, 105, 076801. doi: 10.1103/PhysRevLett.105.076801

    54. [54]

      (54) Ihn, T. Nature Materials 2010, 9, 187. doi: 10.1038/nmat2705

    55. [55]

      (55) Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P.Nano Letters 2010, 10, 5032. doi: 10.1021/nl1032183

    56. [56]

      (56) Kong, D.; Chen, Y.; Cha, J. J.; Zhang, Q.; Analytis, J. G.; Lai,K.; Liu, Z.; Hong, S. S.; Koski, K. J.; Mo, S. K.; Hussain, Z.;Fisher, I. R.; Shen, Z. X.; Cui, Y. Nature Nanotechnology 2011,6, 705. doi: 10.1038/nnano.2011.172

    57. [57]

      (57) Peng, H.; Dang,W.; Cao, J.; Chen, Y.;Wu, D.; Zheng,W.; Li,H.; Shen, Z. X.; Liu, Z. F. Nature Chemistry 2012, 4, 281. doi: 10.1038/nchem.1277

    58. [58]

      (58) Yan, K.; Peng, H.; Zhou, Y.; Li, H.; Liu, Z. F. Nano Letters2011, 11, 1106. doi: 10.1021/nl104000b

    59. [59]

      (59) Wyckoff, R.W. G. Crystal Structures; Krieger: Michigan, 1986.

    60. [60]

      (60) Koma, A. J. Cryst. Growth 1999, 201, 236. doi: 10.1016/S0022-0248(98)01329-3

    61. [61]

      (61) Koma, A. Thin Solid Films 1992, 216, 72. doi: 10.1016/0040-6090(92)90872-9

    62. [62]

      (62) Peng, H.; Meister, S.; Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Letters 2007, 7, 199. doi: 10.1021/nl062047+

    63. [63]

      (63) Peng, H.; Schoen, D. T.; Meister, S.; Zhang, X. F.; Cui, Y.Journal of the American Chemical Society 2007, 129, 34. doi: 10.1021/ja067436k

    64. [64]

      (64) Peng, H.; Xie, C.; Schoen, D. T.; Cui, Y. Nano Letters 2008, 8,1511. doi: 10.1021/nl080524d

    65. [65]

      (65) Peng, H.; Xie, C.; Schoen, D. T.; McIlwrath, K.; Zhang, X. F.;Cui, Y. Nano Letters 2007, 7, 3734. doi: 10.1021/nl0721463

    66. [66]

      (66) Liu, Z. H.; Brown, N. M. D.; McKinley, A. Applied Surface Science 1997, 108, 319. doi: 10.1016/S0169-4332(96)00683-6

    67. [67]

      (67) Chen, Y. L. Frontiers of Physics 2012, 7, 175. doi: 10.1007/s11467-011-0197-9

    68. [68]

      (68) Colthup, N. B.; Daly, L. H.;Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy; Academic Press: New York,1975.

    69. [69]

      (69) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S.Chemical Reviews 1999, 99, 2957. doi: 10.1021/cr980133r

    70. [70]

      (70) Gnezdilov, V.; Pashkevich, Y. G.; Berger, H.; Pomjakushina, E.;Conder, K.; Lemmens, P. Phys. Rev. B 2011, 84, 195118. doi: 10.1103/PhysRevB.84.195118

    71. [71]

      (71) Cheng,W.; Ren, S. F. Physical Review B 2011, 83, 094301. doi: 10.1103/PhysRevB.83.094301

    72. [72]

      (72) Shahil, K. M. F.; Hossain, M. Z.; yal, V.; Balandin, A. A.Journal of Applied Physics 2012, 111, 054305. doi: 10.1063/1.3690913

    73. [73]

      (73) Garate, I.; Franz, M. Physical Review Letters 2010, 104,146802. doi: 10.1103/PhysRevLett.104.146802

    74. [74]

      (74) Yokoyama, T.; Tanaka, Y.; Nagaosa, N. Physical Review B 2010,81, 205401. doi: 10.1103/PhysRevB.81.205401

    75. [75]

      (75) Liu, Q.; Liu, C. X.; Xu, C. K.; Qi, X. L.; Zhang, S. C. Physical Review Letters 2009, 102, 156603. doi: 10.1103/PhysRevLett.102.156603

    76. [76]

      (76) Wang, Y.; Xiu, F.; Cheng, L.; He, L.; Lang, M.; Tang, J.; Kou,X.; Yu, X.; Jiang, X.; Chen, Z.; Zou, J.;Wang, K. L. Nano Letters 2012, 12, 1170. doi: 10.1021/nl202920p

    77. [77]

      (77) Zhang, X. A.;Wang, J.; Zhang, S. C. Physical Review B 2010,82, 245107. doi: 10.1103/PhysRevB.82.245107

    78. [78]

      (78) Hosono, H. Nature Chemistry 2012, 4, 252. doi: 10.1038/nchem.1312

    79. [79]

      (79) Kong, D.; Cha, J. J.; Lai, K.; Peng, H.; Analytis, J. G.; Meister,S.; Chen, Y.; Zhang, H. J.; Fisher, I. R.; Shen, Z. X. ACS Nano2011, 5, 4698. doi: 10.1021/nn200556h

    80. [80]

      (80) yal, V.; Teweldebrhan, D.; Balandin, A. Applied Physics Letters 2010, 97, 133117. doi: 10.1063/1.3494529

    81. [81]

      (81) Ghaemi, P.; Mong, R. S. K.; Moore, J. E. Physical Review Letters 2010, 105, 166603. doi: 10.1103/PhysRevLett.105.166603

    82. [82]

      (82) Chen, H.; Zhu,W.; Xiao, D.; Zhang, Z. Physical Review Letters2011, 107, 056804. doi: 10.1103/PhysRevLett.107.056804


  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    3. [3]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(2136)
  • Abstract views(3016)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return