Citation: LI Song-Mei, WANG Bo, LIU Jian-Hua, YU Mei, AN Jun-Wei. Synthesis and Microwave Absorption Properties of Nickel Nanoparticles-Graphene Composites with Different Morphologies[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201208292 shu

Synthesis and Microwave Absorption Properties of Nickel Nanoparticles-Graphene Composites with Different Morphologies

  • Received Date: 2 July 2012
    Available Online: 29 August 2012

    Fund Project: 航空科学基金(20110251003)资助项目 (20110251003)

  • Nickel nanoparticles-graphene (Ni-GNs) composites with two different morphologies were successfully synthesized by in situ chemical reduction, and the morphology-dependent electromagnetic absorption properties of the composites was investigated. By changing the sequence of the reactants are added during preparation, spherical and spinous spherical nickel nanoparticle-graphene composites were obtained. The structure, morphology, and microwave absorption properties of the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vector network analysis (VNA). The results indicated that the spinous spherical nickel nanoparticle-graphene composites had better microwave absorption ability than the spherical nickel nanoparticle-graphene composites. This is due to the unique isotropic antenna morphology of the spinous spherical nickel nanoparticles in the composites, arising from the point discharge effect. This facile in situ chemical reduction method for the preparation of nickel nanoparticle-graphene composites to give different morphologies could be used for the preparation of other composites.


    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896

    2. [2]

      (2) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; , Y.; Eddaoudi,M.; Matzger, A. J.; Okeeffe, M.; Yaghi, O. M. Nature 2004, 427(6974), 523. doi: 10.1038/nature02311

    3. [3]

      (3) Sclladler, L. S.; Giammris, S. C.; Ajayan, P. M. Appl. Phys. Lett.1998, 73 (26), 3842.

    4. [4]

      (4) Zhang, Y. B.; Tan, J.W.; Stormer, H. L.; Kim, P. Nature 2005,438 (7065), 201. doi: 10.1038/nature04235

    5. [5]

      (5) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.;Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146 (9/10), 351.

    6. [6]

      (6) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3),902. doi: 10.1021/nl0731872

    7. [7]

      (7) Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M.S.; Schaefer, J. A.; Kong, J. Nano Res. 2009, 2 (6), 509. doi: 10.1007/s12274-009-9059-y

    8. [8]

      (8) Berger, C.; Song, Z.; Li, X.;Wu, X. S.; Brown, N.; Naud, C.;Mayou, D.; Li, T.; Hass, J.; Marchhenkow, A. N.; Conrad, E. H.;First, P. N.; Heer,W. A. Science 2006, 312 (5777), 1191. doi: 10.1126/science.1125925

    9. [9]

      (9) Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren,W.C.; Cheng, H. M.Carbon 2010, 48 (15), 4466. doi: 10.1016/j.carbon.2010.08.006

    10. [10]

      (10) Stankovich, S.; Piner, R. D.; Chen, X. Q.;Wu, N. Q.; Nguyen,S. T.; Ruoff, R. S. J. Mater. Chem. 2006, 16 (2), 155. doi: 10.1039/b512799h

    11. [11]

      (11) Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.;Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff,R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969

    12. [12]

      (12) Niu, H. L.; Chen, Q.W.; Ning, M.; Jia, Y. S.;Wang, X, J.J. Phys. Chem. B 2004, 108 (13), 3996. doi: 10.1021/jp0361172

    13. [13]

      (13) An, Z. G.; Pan, S. L.; Zhang, J. J. J. Phys. Chem. C 2009, 113 (4), 1346. doi: 10.1021/jp809224j

    14. [14]

      (14) Zhao, H. T.; Han, X. J.; Zhang, L. F.;Wang, G. Y.;Wang, C.; Li,X. A.; Xu, P. Radiat. Phys. Chem. 2011, 80 (3), 390. doi: 10.1016/j.radphyschem.2010.11.007

    15. [15]

      (15) Ma, F.; Ma, J.; Huang, J. J.; Li, J. G. J. Magn. Magn. Mater.2012, 324 (2), 205. doi: 10.1016/j.jmmm.2011.08.013

    16. [16]

      (16) Wang, C.; Han, X. J.; Xu, P.;Wang, J. Y.; Du, Y. C.;Wang, X.H.; Qin,W.; Zhang, T. J. Phys. Chem. C 2010, 114 (7), 3196.doi: 10.1021/jp908839r

    17. [17]

      (17) Deng, Y. D.; Zhao, L.; Shen, B.; Liu, L.; Hu,W. B. J. Appl. Phys. 2006, 100 (1), 014304. doi: 10.1063/1.2210187

    18. [18]

      (18) Zhao, J. P.; Pei, S. F.; Ren,W. C.; Gao, L. B.; Cheng, H. M. ACS Nano 2010, 4 (9), 5245. doi: 10.1021/nn1015506

    19. [19]

      (19) Xu, C.;Wang, X. Small 2009, 5 (19), 2212. doi: 10.1002/smll.v5:19

    20. [20]

      (20) Yu, M.; Liu, P. R.; Sun, Y. J.; Liu, J. H.; An, J.W.; Li, S. M.J. Inorg. Mater. 2012, 27 (1), 89. [于美, 刘鹏瑞, 孙玉静, 刘建华, 安军伟, 李松梅. 无机材料学报, 2012, 27 (1), 89.]

    21. [21]

      (21) Xu, P.; Han, X. J.;Wang, C.; Zhao, H. T.;Wang, J. Y.;Wang, X.H.; Zhang, B. J. Phys. Chem. B 2008, 112 (10), 2775. doi: 10.1021/jp710259v

    22. [22]

      (22) Sue, K.; Suzuki, A.; Suzuki, M.; Arai, K.; Hakuta, Y.; Hayashi,H.; Hiaki, T. Ind. Eng. Chem. Res. 2006, 45 (2), 623. doi: 10.1021/ie0506062

    23. [23]

      (23) Sarkar, S.; Sinha, A. K.; Pradhan, M.; Basu, M.; Negish, Y.; Pal,T. J. Phys. Chem. C 2011, 115 (5), 1659. doi: 10.1021/jp109572c

    24. [24]

      (24) Li, S. M.; Chen, D. M.; Liu, J. H. Acta Phys. -Chim. Sin. 2004,20 (11), 1389. [李松梅, 陈冬梅, 刘建华. 物理化学学报,2004, 20 (11), 1389. ] doi: 10.3866/PKU.WHXB20041121

    25. [25]

      (25) Ferreira, M. G. S.; Duarte, R. G.; Montemor, M. F.; Simoes, A.M. P. Electrochim. Acta 2004, 49 (17-18), 2927. doi: 10.1016/j.electacta.2004.01.051

    26. [26]

      (26) Sigh, P.; Babbar, V. K.; Razdan, A.; Puri, R. K.; el, T. C.J. Appl. Phys. 2000, 87 (9), 4362.

    27. [27]

      (27) Zhuo, R. F.; Qiao, L.; Feng, H. T.; Chen, J. T.; Yan, D.;Wu, Z.G.; Yan, P. X. J. Appl. Phys. 2008, 104 (9), 094101. doi: 10.1063/1.2973198

    28. [28]

      (28) Zhou, Z.W.; Chu, L. S.; Hu, S. C. Mater. Sci. Eng. B 2006, 126 (1), 93. doi: 10.1016/j.mseb.2005.09.009


    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896

    2. [2]

      (2) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; , Y.; Eddaoudi,M.; Matzger, A. J.; Okeeffe, M.; Yaghi, O. M. Nature 2004, 427(6974), 523. doi: 10.1038/nature02311

    3. [3]

      (3) Sclladler, L. S.; Giammris, S. C.; Ajayan, P. M. Appl. Phys. Lett.1998, 73 (26), 3842.

    4. [4]

      (4) Zhang, Y. B.; Tan, J.W.; Stormer, H. L.; Kim, P. Nature 2005,438 (7065), 201. doi: 10.1038/nature04235

    5. [5]

      (5) Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.;Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146 (9/10), 351.

    6. [6]

      (6) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3),902. doi: 10.1021/nl0731872

    7. [7]

      (7) Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M.S.; Schaefer, J. A.; Kong, J. Nano Res. 2009, 2 (6), 509. doi: 10.1007/s12274-009-9059-y

    8. [8]

      (8) Berger, C.; Song, Z.; Li, X.;Wu, X. S.; Brown, N.; Naud, C.;Mayou, D.; Li, T.; Hass, J.; Marchhenkow, A. N.; Conrad, E. H.;First, P. N.; Heer,W. A. Science 2006, 312 (5777), 1191. doi: 10.1126/science.1125925

    9. [9]

      (9) Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren,W.C.; Cheng, H. M.Carbon 2010, 48 (15), 4466. doi: 10.1016/j.carbon.2010.08.006

    10. [10]

      (10) Stankovich, S.; Piner, R. D.; Chen, X. Q.;Wu, N. Q.; Nguyen,S. T.; Ruoff, R. S. J. Mater. Chem. 2006, 16 (2), 155. doi: 10.1039/b512799h

    11. [11]

      (11) Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.;Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff,R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969

    12. [12]

      (12) Niu, H. L.; Chen, Q.W.; Ning, M.; Jia, Y. S.;Wang, X, J.J. Phys. Chem. B 2004, 108 (13), 3996. doi: 10.1021/jp0361172

    13. [13]

      (13) An, Z. G.; Pan, S. L.; Zhang, J. J. J. Phys. Chem. C 2009, 113 (4), 1346. doi: 10.1021/jp809224j

    14. [14]

      (14) Zhao, H. T.; Han, X. J.; Zhang, L. F.;Wang, G. Y.;Wang, C.; Li,X. A.; Xu, P. Radiat. Phys. Chem. 2011, 80 (3), 390. doi: 10.1016/j.radphyschem.2010.11.007

    15. [15]

      (15) Ma, F.; Ma, J.; Huang, J. J.; Li, J. G. J. Magn. Magn. Mater.2012, 324 (2), 205. doi: 10.1016/j.jmmm.2011.08.013

    16. [16]

      (16) Wang, C.; Han, X. J.; Xu, P.;Wang, J. Y.; Du, Y. C.;Wang, X.H.; Qin,W.; Zhang, T. J. Phys. Chem. C 2010, 114 (7), 3196.doi: 10.1021/jp908839r

    17. [17]

      (17) Deng, Y. D.; Zhao, L.; Shen, B.; Liu, L.; Hu,W. B. J. Appl. Phys. 2006, 100 (1), 014304. doi: 10.1063/1.2210187

    18. [18]

      (18) Zhao, J. P.; Pei, S. F.; Ren,W. C.; Gao, L. B.; Cheng, H. M. ACS Nano 2010, 4 (9), 5245. doi: 10.1021/nn1015506

    19. [19]

      (19) Xu, C.;Wang, X. Small 2009, 5 (19), 2212. doi: 10.1002/smll.v5:19

    20. [20]

      (20) Yu, M.; Liu, P. R.; Sun, Y. J.; Liu, J. H.; An, J.W.; Li, S. M.J. Inorg. Mater. 2012, 27 (1), 89. [于美, 刘鹏瑞, 孙玉静, 刘建华, 安军伟, 李松梅. 无机材料学报, 2012, 27 (1), 89.]

    21. [21]

      (21) Xu, P.; Han, X. J.;Wang, C.; Zhao, H. T.;Wang, J. Y.;Wang, X.H.; Zhang, B. J. Phys. Chem. B 2008, 112 (10), 2775. doi: 10.1021/jp710259v

    22. [22]

      (22) Sue, K.; Suzuki, A.; Suzuki, M.; Arai, K.; Hakuta, Y.; Hayashi,H.; Hiaki, T. Ind. Eng. Chem. Res. 2006, 45 (2), 623. doi: 10.1021/ie0506062

    23. [23]

      (23) Sarkar, S.; Sinha, A. K.; Pradhan, M.; Basu, M.; Negish, Y.; Pal,T. J. Phys. Chem. C 2011, 115 (5), 1659. doi: 10.1021/jp109572c

    24. [24]

      (24) Li, S. M.; Chen, D. M.; Liu, J. H. Acta Phys. -Chim. Sin. 2004,20 (11), 1389. [李松梅, 陈冬梅, 刘建华. 物理化学学报,2004, 20 (11), 1389. ] doi: 10.3866/PKU.WHXB20041121

    25. [25]

      (25) Ferreira, M. G. S.; Duarte, R. G.; Montemor, M. F.; Simoes, A.M. P. Electrochim. Acta 2004, 49 (17-18), 2927. doi: 10.1016/j.electacta.2004.01.051

    26. [26]

      (26) Sigh, P.; Babbar, V. K.; Razdan, A.; Puri, R. K.; el, T. C.J. Appl. Phys. 2000, 87 (9), 4362.

    27. [27]

      (27) Zhuo, R. F.; Qiao, L.; Feng, H. T.; Chen, J. T.; Yan, D.;Wu, Z.G.; Yan, P. X. J. Appl. Phys. 2008, 104 (9), 094101. doi: 10.1063/1.2973198

    28. [28]

      (28) Zhou, Z.W.; Chu, L. S.; Hu, S. C. Mater. Sci. Eng. B 2006, 126 (1), 93. doi: 10.1016/j.mseb.2005.09.009


  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240065

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230447

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230253

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240043

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240350

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240216

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240298

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230252

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240204

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230276

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312

    18. [18]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, doi: 10.3866/PKU.DXHX202308049

    19. [19]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(1405)
  • Abstract views(3314)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return