Citation: ZHOU En-Nian, YU Zhi-Hui, QU Jing-Kui, Qi Tao, Han Xiao-Ying, ZHANG Guo-Qing. Equilibrium Solubility Modeling of CO2 in Na2Cr2O7 Solutions[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201208211
-
The solubility of CO2 in aqueous Na2Cr2O7 solutions of different concentrations (0, 0.361, 0.650, and 0.901 mol·kg-1) was measured in a stirred vapor-liquid high-pressure equilibrium cell using the static method at temperatures and pressures in the ranges of 313.2 to 333.2 K and 0.1 to 1.9 MPa, respectively. The results indicated that the phenomenon of CO2 dissolved in aqueous Na2Cr2O7 could be interpreted according to a “salting-out effect”. Furthermore, our solubility data for CO2 in aqueous Na2Cr2O7 was in agreement with Henry's law, and the Henry constant appeared to be a function of temperature, pressure, and the concentration of Na2Cr2O7. Two thermodynamic models were applied to correlate the experimental data, including the modified Setschenow and Peng-Robinson-Pitzer equations, and the averaged relative deviations were found to be 4.24% and 3.32%, respectively.
-
-
[1]
(1) Shreve, R. N. The Chemical Process Industries; McGraw-Hill:New York, 1956.
-
[2]
(2) Cheng, S.W.; Ding, Y.; Yang, C. R. Production Engineering of Chromium Salts; Chemical Industry Press: Beijing, 1988; p 127.[成思危, 丁翼, 杨春荣. 铬盐生产工艺. 北京: 化学工业出版社, 1988:127.]
-
[3]
(3) Li, Z. Y. Inorg. Chem. Ind. 2006, 38, 1. [李兆业. 无机盐工业, 2006, 38, 1.]
-
[4]
(4) Li, Z. Y. Inorg. Chem. Ind. 2005, 37, 1. [李兆业. 无机盐工业,2005, 37, 1.]
-
[5]
(5) Ding, Y. Chem. Ind. Eng. Prog. 2003, 23, 345. [丁翼. 化工进展, 2003, 23, 345.]
-
[6]
(6) Han, X. Y.; Yu, Z. H.; Qu, J. K.; Qi, T.; Guo,W.; Zhang, G. Q.J. Chem. Eng. Data 2011, 56, 1213. doi: 10.1021/je1011168
-
[7]
(7) Ermatchkov, V.; Kamps, A. P. S.; Maurer, G. J. Solut. Chem.2006, 45, 6081.
-
[8]
(8) Zoghi, A. T.; Feyzi, F.; Zarrinpashneh, S. J. Chem. Thermodynamics 2012, 44, 66. doi: 10.1016/j.jct.2011.08.011
-
[9]
(9) Rebolledo-Morales, M. A.; Rebolledo-Libreros, M. E.; Trejo, A.J. Chem. Thermodynamics 2011, 43, 690. doi: 10.1016/j.jct.2010.12.008
-
[10]
(10) Ferrentino, G.; Barletta, D.; Balaban, M. O.; Ferrari, G.; Poletto,M. J. Supercrit. Fluids 2009, 1, 1.
-
[11]
(11) Kamps, P. S.; Meyer, E.; Rumpf, B.; Maurer, G. J. Chem. Eng. Data 2007, 52, 817. doi: 10.1021/je060430q
-
[12]
(12) Gao, J.; Zheng, D. Q.; Guo, T. M. J. Chem. Eng. Data 1997, 42,69. doi: 10.1021/je960275n
-
[13]
(13) Wong, C. S.; Tishchenko, P. Y.; Johnson,W. K. J. Chem. Eng. Data 2005, 50, 817. doi: 10.1021/je049716q
-
[14]
(14) Derks, P.W. J. D.; Dijkstra, H. B. S. D.; Hogendoorn, J. A.;Versteeg, G. F. Am. Inst. Chem. Eng. J. 2005, 51, 2311. doi: 10.1002/(ISSN)1547-5905
-
[15]
(15) Dong, L. H.; Chen, J.; Gao, G. H. J. Chem. Eng. Data 2010, 55,1030. doi: 10.1021/je900492a
-
[16]
(16) Zhu, R. J.; Yu, J. L.; Xu,W.; Liu, Z. H.; Tian, Y. L. J. Chem. Ind. Eng. 2006, 57, 2270. [朱荣娇, 于景琳, 徐伟, 刘志华,田宜灵. 化工学报, 2006, 57, 2270.]
-
[17]
(17) Huang, Q.W.;Wang, Y. P.; Zhang, G. J.; Han, L. J.; Liang, Y. J. Chem. Ind. Eng. 2008, 59, 287. [黄群武, 王一平, 张国建, 韩立君, 梁瑛. 化工学报, 2008, 59, 287.]
-
[18]
(18) Gubkov, N. A.; Fermor, N. A.; Smirnov, N. I. Zh. Prikl. Khim.1964, 37, 2204.
-
[19]
(19) Lide, D. R.; Frederikse, H. P. R. CRC Handbook of Chemistry and Physics, 76th ed.; CRC Press Inc.: Boca Raton, FL, 1995.
-
[20]
(20) Li, Y. G. Thermodynamics of Metal Solvent Extraction;Tsinghua University Press: Beijing, 1988. [李以圭. 电解质溶液理论. 北京: 清华大学出版社, 1988.]
-
[21]
(21) Li, Y. G.; Mather, A. E. Ind. Eng. Chem. Res. 1996, 35, 4804.doi: 10.1021/ie960244l
-
[22]
(22) Wang, Z. L.; Zhou, Y. P. Physical Chemistry; Higher EducationPress: Beijing, 2003. [王正烈, 周亚平. 物理化学. 北京: 高等教育出版社, 2003.]
-
[23]
(23) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. 1976, 15, 59.
-
[24]
(24) Pitzer, K. S. J. Phys. Chem. 1973, 77, 268. doi: 10.1021/j100621a026
-
[25]
(25) Pitzer, K. S.; Mayorga, G. J. Phys. Chem. 1973, 77, 2300. doi: 10.1021/j100638a009
-
[26]
(26) Pitzer, K. S.; Janice, J. K. J. Am. Chem. Soc. 1974, 96, 5701.doi: 10.1021/ja00825a004
-
[1]
-
-
[1]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, doi: 10.3866/PKU.DXHX202311027
-
[2]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, doi: 10.3866/PKU.DXHX202312084
-
[3]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, doi: 10.3866/PKU.DXHX202312091
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230421
-
[5]
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109281
-
[6]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, doi: 10.3866/PKU.DXHX202311057
-
[7]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108692
-
[8]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108942
-
[9]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100193
-
[10]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100307
-
[11]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100328
-
[12]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108954
-
[13]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028
-
[16]
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109131
-
[17]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, doi: 10.3866/PKU.DXHX202310026
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230349
-
[19]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230434
-
[20]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2024.100359
-
[1]
Metrics
- PDF Downloads(734)
- Abstract views(1392)
- HTML views(9)