Citation:
FANY Ya-Mei, WANY Quan-De, WANY Fan, LI Xiang-Yuan. Reduction of the Detailed Kinetic Mechanism for High-Temperature Combustion of n-Dodecane[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201208201
-
The detailed chemical kinetic mechanism for high-temperature combustion of n-dodecane was systematically reduced via integrated mechanism reduction methods. The skeletal mechanism, including 59 species and 222 elementary reactions, was derived using the directed relation graph method (DRG) combined with a method based on computational singular perturbation (CSP) importance index from a detailed mechanism consisting of 1279 species and 5056 elementary reactions. The skeletal mechanism was further reduced through time-scale analysis. The CSP method was employed for the selection of quasi steady state (QSS) species, and ten species were chosen as QSS species. Finally, based on the quasi steady state approximation method, a 49-species reduced mechanism was derived. Both the skeletal mechanism and the 49-species reduced mechanism reproduced the ignition delay time, extinction, and species profiles of the detailed mechanism over a wide range of simulation conditions.
-
-
-
[1]
(1) Lu, T. F.; Law, C. K. Prog. Energy Combust. Sci. 2009, 35, 192.doi: 10.1016/j.pecs.2008.10.002
-
[2]
(2) Dagaut, P.; Cathonnet, M. Prog. Energy Combust. Sci. 2006, 32,48. doi: 10.1016/j.pecs.2005.10.003
-
[3]
(3) Valorani, M.; Creta, F.; ussis, D. A.; Lee, J. C.; Najm, H. N.Combust. Flame 2006, 146, 29. doi: 10.1016/j.combustflame.2006.03.011
-
[4]
(4) Lam, S. H. Combust. Sci. Technol. 1993, 89, 375. doi: 10.1080/00102209308924120
-
[5]
(5) Rabitz, H.; Kramer, M. A.; Dacol, D. Annu. Rev. Phys. Chem.1983, 34, 419. doi: 10.1146/annurev.pc.34.100183.002223
-
[6]
(6) Vajda, S.; Valko, P.; Turanyi, T. Int. J. Chem. Kinet. 1985, 17,55. doi: 10.1002/(ISSN)1097-4601
-
[7]
(7) Lu, T. F.; Law, C. K. Proc. Combust. Inst. 2005, 30, 1333. doi: 10.1016/j.proci.2004.08.145
-
[8]
(8) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154, 67.doi: 10.1016/j.combustflame.2007.10.020
-
[9]
(9) Sun,W.; Chen, Z.; u, X.; Ju, Y. Combust. Flame 2010, 157,1298. doi: 10.1016/j.combustflame.2010.03.006
-
[10]
(10) Wang, Q. D.; Fang, Y. M.;Wang, F.; Li, X. Y. Combust. Flame2012, 159, 91. doi: 10.1016/j.combustflame.2011.05.019
-
[11]
(11) Chen, J. Y. Combust. Sci. Tech. 1988, 57, 89. doi: 10.1080/00102208808923945
-
[12]
(12) Lam, S. H.; usiss, D. A. Int. J. Chem. Kinet. 1994, 26, 461.doi: 10.1002/(ISSN)1097-4601
-
[13]
(13) Maas, U.; Pope, S. B. Combust. Flame 1992, 88, 239. doi: 10.1016/0010-2180(92)90034-M
-
[14]
(14) You, X.; E lfopoulos, F. N.;Wang, H. Proc. Combust. Inst.2009, 32, 403. doi: 10.1016/j.proci.2008.06.041
-
[15]
(15) Hua, X. X.;Wang, J. B.;Wang, Q. D.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim Sin. 2011, 27, 2755. [华晓筱, 王静波, 王全德,谈宁馨, 李象远. 物理化学学报, 2011, 27, 2755.] doi: 10.3866/PKU.WHXB20112755
-
[16]
(16) Herbinet, O.; Marquaire, P. M.; Battin-Leclerc, F.; Fournet, R.J. Anal. Appl. Pyrolysis 2007, 78, 419. doi: 10.1016/j.jaap.2006.10.010
-
[17]
(17) Westbrook, C. K.; Pitz,W. J.; Herbinet, O.; Curran, H. J.; Silke,E. J. Combust. Flame 2009, 156, 181. doi: 10.1016/j.combustflame.2008.07.014
-
[18]
(18) Lu, T. F.; Law, C. K. Combust. Flame 2008, 154, 153. doi: 10.1016/j.combustflame.2007.11.013
-
[19]
(19) Zhan, H.; Qian, Z. Q. Computers and Applied Chemistry 2007,24, 1484. [詹浩, 钱祉祺. 计算机与应用化学, 2007, 24,1484.]
-
[20]
(20) Qian,W. Q.; Yang, S. H.; Xiao, B. G.; Le, J. L. Chinese Journal of Theoretical and Applied Mechanics 2007, 39, 37. [钱炜祺,杨顺华, 肖保国, 乐嘉陵. 力学学报, 2007, 39, 37.]
-
[21]
(21) Lu, T. F.; Law, C. K. Combust. Flame 2008, 154, 761. doi: 10.1016/j.combustflame.2008.04.025
-
[22]
(22) Chen, J. Y.; Tham, Y. F. Combust. Flame 2008, 153, 634. doi: 10.1016/j.combustflame.2007.12.006
-
[23]
(23) Kee, R. J.; Rupley, F. M.; Miller, J. A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Report, SAND89-8009. Sandia, 1989.
-
[24]
(24) Lutz, A. E.; Kee, R. J.; Miller, J. A. Senkin: a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis. Report, SAND87-8248. Sandia, 1990.
-
[25]
(25) Lu, T. F.; Law, C. K. Combust. Flame 2006, 144, 24. doi: 10.1016/j.combustflame.2005.02.015
-
[26]
(26) Glarborg, P.; Kee, R. J.; Grcar, J. F.; Miller, J. A. PSR: A FORTRAN Program for Modeling Well-Stirred Reactors. ReportSAND86-8209. Sandia, 1986.
-
[27]
(27) Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame2008, 153, 343. doi: 10.1016/j.combustflame.2007.11.012
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, doi: 10.3866/PKU.DXHX202310047
-
[2]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074
-
[3]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, doi: 10.12461/PKU.DXHX202407022
-
[4]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309101
-
[5]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, doi: 10.12461/PKU.DXHX202406117
-
[6]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, doi: 10.3866/PKU.DXHX202311033
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044
-
[8]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, doi: 10.12461/PKU.DXHX202405154
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048
-
[11]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240078
-
[12]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, doi: 10.3866/PKU.DXHX202311057
-
[13]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202312006
-
[14]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100045
-
[15]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240030
-
[16]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029
-
[17]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093
-
[18]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, doi: 10.12461/PKU.DXHX202406012
-
[19]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407021
-
[20]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052
-
[1]
Metrics
- PDF Downloads(926)
- Abstract views(1912)
- HTML views(46)