Citation:
WANG Yan, ZENG Xiao-Lan. 1,2- and 1,4-Addition Reactions between Silabenzenes and HX (X=F, OH, NH2)[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201208134
-
Density functional theory calculations at the B3LYP/6-311 ++ G(d,p) level were performed to study the reaction mechanism and potential energy surface of the 1,2- and 1,4-addition reactions between silabenzenes and HX (X=F, OH, NH2). The influences of substituents at the Si atom and tetrahydrofuran as a solvent on the potential energy surfaces of the reactions were also explored. The results indicated that the title reactions occur by the following two mechanisms: (1) silabenzene and one HX molecule form an intermediate complex, and then isomerize to give final product via a four-membered transition state; and (2) silabenzene and two HX molecules form an intermediate complex, and then isomerize via a sixmembered transition state to give another intermediate complex from which one HX molecule is left to afford the final product. Mechanism 2 is much more favorable than mechanism 1 kinetically. The preference for the 1,2- or 1,4-addition product is determined by kinetics and is related to the X group. The reactivity order of HX toward the addition reaction with silabenzene in gas phase is HF>H2O>NH3. Strong electron-donating and -withdrawing substituents at the Si atom have a favorable influence on the potential energy surfaces of the 1,2- and 1,4-addition reactions, while the large mesityl group has the opposite effect. Tetrahydrofuran has an unfavorable thermodynamic influence on the reactions, and kinetically on those reactions with HF or H2O. However, it favors the reactions between silabenzenes and NH3 kinetically.
-
-
-
[1]
(1) Barton, T. J.; Burns, G. T. J. Am. Chem. Soc. 1978, 100, 5246.doi: 10.1021/ja00484a075
-
[2]
(2) Ando,W.; Tanikawa, H.; Sekiguchi, A. Tetrahedron Lett. 1983,24, 4245. doi: 10.1016/S0040-4039(00)88312-4
-
[3]
(3) Kreil, C. L.; Chapman, O. L.; Burns, G. T.; Barton, T. J. J. Am. Chem. Soc. 1980, 102, 841. doi: 10.1021/ja00522a068
-
[4]
(4) Barton, T. J.; Vuper, M. J. Am. Chem. Soc. 1981, 103, 6788.doi: 10.1021/ja00412a061
-
[5]
(5) Märkl, G.; Hofmeister, P. Angew. Chem. Int. Edit. 1979, 18,789.
-
[6]
(6) Wakita, K.; Tokitoh, N.; Okazaki, R.; Takagi, N.; Nagase, S.J. Am. Chem. Soc. 2000, 122, 5648. doi: 10.1021/ja000309i
-
[7]
(7) Wakita, K.; Tokitoh, N.; Okazaki, R.; Nagase, S. Angew. Chem. Int. Edit. 2000, 39, 634.
-
[8]
(8) Tokitoh, N. Accounts Chem. Res. 2004, 37, 86. doi: 10.1021/ar020093k
-
[9]
(9) Schlegel, H. B.; Coleman, B.; Jones, M. J. Am. Chem. Soc.1978, 100, 6499. doi: 10.1021/ja00488a039
-
[10]
(10) Blustin, P. H. J. Organomet. Chem. 1979, 166, 21. doi: 10.1016/S0022-328X(00)91416-5
-
[11]
(11) Reyes, L. M.; Canuto, S. J. Mol. Struct. -Theochem 1982, 89,77. doi: 10.1016/0166-1280(82)80154-1
-
[12]
(12) Chandrasekhar, J.; Schleyer, P. v. R.; Baumgaertner, R. O.W.;Reetz, M. T. J. Org. Chem. 1983, 48, 3453.
-
[13]
(13) Baldridge, K. K.; rdon, M. S. Organometallics 1988, 7, 144.doi: 10.1021/om00091a023
-
[14]
(14) Baldridge, K. K.; Uzan, O.; Martin, J. M. L. Organometallics2000, 19, 1477. doi: 10.1021/om9903745
-
[15]
(15) Priyakumar, U. D.; Sastry, G. N. Organometallics 2002, 21,1493. doi: 10.1021/om011001i
-
[16]
(16) Dhevi, D. M.; Priyakumar, U. D.; Sastry, G. N. J. Mol. Struct. -Theochem 2002, 618, 173. doi: 10.1016/S0166-1280(02)00470-0
-
[17]
(17) Santos, J. C.; Fuentealba, P. Chem. Phys. Lett. 2007, 443, 439.doi: 10.1016/j.cplett.2007.06.105
-
[18]
(18) Shinohara, A.; Takeda, N.; Sasamori, T.; Matsumoto, T.;Tokitoh, N. Organometallics 2005, 24, 6141. doi: 10.1021/om0501778
-
[19]
(19) Zhang, S. G.; Liu, J. H.; Zhang,W. X.; Xi, Z. F. Prog. Chem.2009, 21, 1487. [张韶光, 刘俊辉, 张文雄, 席振峰. 化学进展, 2009, 21, 1487.]
-
[20]
(20) Wang, Y.; Zeng, X. L.;Wang, L. Acta Phys. -Chim. Sin. 2009,25, 371. [王岩, 曾小兰, 汪玲. 物理化学学报, 2009, 25,371.] doi: 10.3866/PKU.WHXB20090230
-
[21]
(21) Wang, Y.; Zeng, X. L.; Fang, D. C. Acta Chim. Sin. 2010, 68,941. [王岩, 曾小兰, 方德彩. 化学学报, 2010, 68, 941.]
-
[22]
(22) Li, B. Y.; Sheu, J. H.; Su, M. D. Organometallics 2011, 30, 4862.
-
[23]
(23) Li, B. Y.; Su, M. D. Organometallics 2011, 30, 6189.doi: 10.1021/om200725u
-
[24]
(24) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett.1996, 255, 327. doi: 10.1016/0009-2614(96)00349-1
-
[25]
(25) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[26]
(26) Bader, R. F.W. Chem. Rev. 1991, 91, 893. doi: 10.1021/cr00005a013
-
[27]
(27) Biegler-Konig, F.; Schonbohm, J. J. Comput. Chem. 2002, 23,1489.
-
[28]
(28) Zhou, Z. Y.; Liu, M.; Su, Z. M.; Xie, Y. Z.; Ding, S. D.;Wang,H. J. Acta Phys. -Chim. Sin. 2011, 27, 2035. [周子彦,刘敏, 苏忠民, 谢玉忠, 丁慎德, 王华静. 物理化学学报,2011, 27, 2035.] doi: 10.3866/PKU.WHXB20110903
-
[29]
(29) Yang, G. H.; Li, Y. X.; Yan, S. H.; Dai, L.; Zhao, B. Acta Chim. Sin. 2011, 69, 1743. [杨国辉, 李言信, 颜世海, 代丽,赵斌. 化学学报, 2011, 69, 1743.]
-
[1]
-
-
-
[1]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, doi: 10.12461/PKU.DXHX202407022
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309101
-
[3]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240302
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, doi: 10.3866/PKU.DXHX202310095
-
[5]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, doi: 10.12461/PKU.DXHX202403010
-
[6]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, doi: 10.12461/PKU.DXHX202405072
-
[7]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309024
-
[8]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, doi: 10.12461/PKU.DXHX202405172
-
[9]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, doi: 10.3866/PKU.DXHX202309001
-
[10]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240078
-
[11]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, doi: 10.12461/PKU.DXHX202405166
-
[12]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202404045
-
[13]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230385
-
[14]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240213
-
[15]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, doi: 10.3866/PKU.DXHX202310047
-
[16]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240026
-
[17]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240072
-
[18]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202312006
-
[19]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240210
-
[20]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240007
-
[1]
Metrics
- PDF Downloads(640)
- Abstract views(2352)
- HTML views(3)