Citation: LING Xing, DING Chuan-Fan. Online Electrochemistry/Electrospray Mass Spectrometry with a Coaxial Probe for Investigation of Electrochemical Derivatization of Anthracene with Dodecylamine[J]. Acta Physico-Chimica Sinica, ;2012, 28(11): 2616-2624. doi: 10.3866/PKU.WHXB201208133 shu

Online Electrochemistry/Electrospray Mass Spectrometry with a Coaxial Probe for Investigation of Electrochemical Derivatization of Anthracene with Dodecylamine

  • Received Date: 17 April 2012
    Available Online: 13 August 2012

    Fund Project: 国家科技支撑计划(2009BAK60B03) (2009BAK60B03)中国博士后科学基金(20110490652)资助项目 (20110490652)

  • In the present study, a coaxial probe was used for online electrochemistry/electrospray mass spectrometry (EC/ES-MS). The probe can be constructed quickly using readily available materials at low cost. A wireless potentiostat floating at the electrospray high voltage was used to control the probe in a two-electrode configuration. Using an acetonitrile solution containing diphenylanthracene or triethylamine, we examined the performances of the probe, including the accuracy of potential control, the conversion efficiency, the response time, and the tolerance to fouling. A silver(I) salt solution (10 mmol·L-1) in acetonitrile was used as the electrolyte and depolarizer. This decreased the solution resistance of the probe to approximately 250 Ω and enabled precise potential control during online operations. od correspondence was observed between the hydrodynamic and cyclic voltammograms of diphenylanthracene. At 3.6 μL·min-1, the response time of the probe was as low as 5 s and the conversion efficiency for triethylamine was 77%. Using the coaxial probe, we investigated the electrochemical derivatization of anthracene with dodecylamine. As a non-polar compound, anthracene usually cannot be detected by ES-MS. However, with the EC/ES-MS, the anthracene was first oxidized electrochemically, and then derivatized online by reactions with dodecylamine. The derivatization produced polar compounds that appeared in the ES-MS in high abundance. The products were identified and the reaction mechanism was elucidated. The results provide insight into the complex electrochemical behavior of anthracene.

  • 加载中
    1. [1]

      (1) Crain, P. F. Electrospray Ionization Mass Spectrometry ofNucleic Acids and Their Constituents, In Electrospray Ionization Mass Spectrometry; Cole, R. B. Ed.;Wiley: NewYork, 1997, p 421.

    2. [2]

      (2) Voyksner, R. D. Combining Liquid Chromatography withElectrospray Mass Spectrometry, In Electrospray Ionization Mass Spectrometry; Cole, R. B. Ed.;Wiley: New York, 1997,p 323.

    3. [3]

      (3) Severs, J. C.; Smith, R. D. Capillary Electrophoresis:Electrospray Ionization Mass Spectrometry, In Electrospray Ionization Mass Spectrometry; Cole, R. B. Ed.;Wiley: NewYork, 1997, p 343.

    4. [4]

      (4) Zhou, F. M.; Van Berkel, G. J. Anal. Chem. 1995, 67, 3643. doi: 10.1021/ac00116a005

    5. [5]

      (5) Xu, X. M.; Lu,W. Z.; Cole, R. B. Anal. Chem. 1996, 68, 4244.doi: 10.1021/ac960362i

    6. [6]

      (6) Lu,W. Z.; Xu, X. M.; Cole, R. B. Anal. Chem. 1997, 69, 2478.doi: 10.1021/ac9612842

    7. [7]

      (7) Deng, H. T.; Van Berkel, G. J. Electroanalysis 1999, 11, 857.doi: 10.1002/(SICI)1521-4109(199908)11:12<857::AIDELAN857>3.0.CO;2-1

    8. [8]

      (8) Diehl, G.; Karst, U. Anal. Bioanal. Chem. 2002, 373, 390. doi: 10.1007/s00216-002-1281-3

    9. [9]

      (9) Karst, U. Angew. Chem. Int. Edit. 2004, 43, 2476. doi: 10.1002/anie.200301763

    10. [10]

      (10) Zettersten, C.; Lomoth, R.; Hammarstrom, L.; Sjoberg, P. J. R.;Nyholm, L. J. Electroanal. Chem. 2006, 590, 90. doi: 10.1016/j.jelechem.2006.02.028

    11. [11]

      (11) Van Berkel, G. J.; Kertesz, V. Anal. Chem. 2007, 79, 5510. doi: 10.1021/ac071944a

    12. [12]

      (12) Permentier, H. P.; Bruins, A. P.; Bischoff, R. Mini-Rev. Med. Chem. 2008, 8, 46. doi: 10.2174/138955708783331586

    13. [13]

      (13) Zettersten, C.; Sjoberg, P. J. R.; Nyholm, L. Anal. Chem. 2009,81, 5180. doi: 10.1021/ac802563f

    14. [14]

      (14) Bond, A. M.; Colton, R.; Da stino, A.; Downard, A. J.;Traeger, J. C. Anal. Chem. 1995, 67, 1691. doi: 10.1021/ac00106a007

    15. [15]

      (15) Zhang, T. Y.; Palii, S. P.; Eyler, J. R.; Brajter-Toth, A. Anal. Chem. 2002, 74, 1097. doi: 10.1021/ac015543l

    16. [16]

      (16) Hayen, H.; Karst, U. Anal. Chem. 2003, 75, 4833. doi: 10.1021/ac0346050

    17. [17]

      (17) Deng, H. T.; Van Berkel, G. J. Anal. Chem. 1999, 71, 4284.doi: 10.1021/ac990527y

    18. [18]

      (18) Bokman, C. F.; Zettersten, C.; Sjoberg, P. J. R.; Nyholm, L.Anal. Chem. 2004, 76, 2017. doi: 10.1021/ac030388r

    19. [19]

      (19) Yoshida, K. Electrooxidation in Organic Chemistry;Wiley: NewYork, 1984.

    20. [20]

      (20) Friend, K. E.; Ohnesorge,W. E. J. Org. Chem. 1963, 28, 2435.doi: 10.1021/jo01044a502

    21. [21]

      (21) Majeski, E. J.; Stuart, J. D.; Ohnesorg,W. J. Am. Chem. Soc.1968, 90, 633. doi: 10.1021/ja01005a013

    22. [22]

      (22) Loveland, J.W.; Dimeler, G. R. Anal. Chem. 1961, 33, 1196.doi: 10.1021/ac60177a022

    23. [23]

      (23) Smith, P. J.; Mann, C. K. J. Org. Chem. 1969, 34, 1821.doi: 10.1021/jo01258a063

    24. [24]

      (24) Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Nonaqueous Systems; Marcel Dekker: New York, 1970.

    25. [25]

      (25) Organic Electrochemistry, 4th ed.; Lund, H., Hammerich, O.Eds.; Marcel Dekker: New York, 2001.

    26. [26]

      (26) Parker, V. D. Acta Chim. Scand. 1970, 24, 2757. doi: 10.3891/acta.chem.scand.24-2757

    27. [27]

      (27) Parker, V. D. Acta Chim. Scand. 1970, 24, 3151. doi: 10.3891/acta.chem.scand.24-3151

    28. [28]

      (28) Parker, V. D. Acta Chim. Scand. 1970, 24, 3162. doi: 10.3891/acta.chem.scand.24-3162

    29. [29]

      (29) Parker, V. D. Accounts Chem. Res. 1984, 17, 243. doi: 10.1021/ar00103a004

    30. [30]

      (30) (a) Ling, X.; Ding, C. F. Chin. J. Anal. Chem. 2012, accepted.[凌星, 丁传凡. 分析化学, 2012, 40 (10)]

    31. [31]

      (b) Ling, X.; Ding, C. F. Coaxial Probe for OnlineElectrochemistry/ Electrospray Mass Spectrometry, InInstrumentation: New Developments in Ionization and Sampling II, Proceedings of the 60th ASMS Conference on MassSpectrometry and Allied Topics, Vancouver, Canada, May20-24, 2012; ASMS: Santa Fe, NM, 2012.

    32. [32]

      (31) Sioda, R. E. J. Phys. Chem. 1968, 72, 2322. doi: 10.1021/j100853a007

    33. [33]

      (32) Howell, J. O.;Wightman, R. M. J. Phys. Chem. 1984, 88, 3915.doi: 10.1021/j150662a001

    34. [34]

      (33) Hammerich, O.; Parker, V. D. Advances in Physical Organic Chemistry 1984, 20, 55. doi: 10.1016/S0065-3160(08)60148-3

    35. [35]

      (34) Mautjana, N. A.; Estes, J.; Eyler, J. R.; Brajter-Toth, A.Electroanalysis 2008, 20, 1959. doi: 10.1002/elan.v20:18

    36. [36]

      (35) Yeager, H. L.; Kratochv.B. J. Phys. Chem. 1969, 73, 1963.doi: 10.1021/j100726a053

    37. [37]

      (36) Bard, A. J.; Faulkner, L. R. Electrochemical Methods; 2nd ed.;Wiley: New York, 2001.

    38. [38]

      (37) Kertesz, V.; Van Berkel, G. J.; Granger, M. C. Anal. Chem.2005, 77, 4366. doi: 10.1021/ac0503411

    39. [39]

      (38) Mann, C. K. Anal. Chem. 1964, 36, 2424. doi: 10.1021/ac60219a014

    40. [40]

      (39) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vila, N.Langmuir 2004, 20, 8243. doi: 10.1021/la049194c

    41. [41]

      (40) Henderson,W.; McIndoe, J. S. Mass Spectrometry of Inorganic, Coordination, and Organometallic Compounds;Wiley:Chichester, 2005.

    42. [42]

      (41) Suh, J.; Min, D.W. J. Org. Chem. 1991, 56, 5710. doi: 10.1021/jo00019a048


  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    13. [13]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

Metrics
  • PDF Downloads(744)
  • Abstract views(2307)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return