Citation: LING Xing, DING Chuan-Fan. Online Electrochemistry/Electrospray Mass Spectrometry with a Coaxial Probe for Investigation of Electrochemical Derivatization of Anthracene with Dodecylamine[J]. Acta Physico-Chimica Sinica, ;2012, 28(11): 2616-2624. doi: 10.3866/PKU.WHXB201208133
-
In the present study, a coaxial probe was used for online electrochemistry/electrospray mass spectrometry (EC/ES-MS). The probe can be constructed quickly using readily available materials at low cost. A wireless potentiostat floating at the electrospray high voltage was used to control the probe in a two-electrode configuration. Using an acetonitrile solution containing diphenylanthracene or triethylamine, we examined the performances of the probe, including the accuracy of potential control, the conversion efficiency, the response time, and the tolerance to fouling. A silver(I) salt solution (10 mmol·L-1) in acetonitrile was used as the electrolyte and depolarizer. This decreased the solution resistance of the probe to approximately 250 Ω and enabled precise potential control during online operations. od correspondence was observed between the hydrodynamic and cyclic voltammograms of diphenylanthracene. At 3.6 μL·min-1, the response time of the probe was as low as 5 s and the conversion efficiency for triethylamine was 77%. Using the coaxial probe, we investigated the electrochemical derivatization of anthracene with dodecylamine. As a non-polar compound, anthracene usually cannot be detected by ES-MS. However, with the EC/ES-MS, the anthracene was first oxidized electrochemically, and then derivatized online by reactions with dodecylamine. The derivatization produced polar compounds that appeared in the ES-MS in high abundance. The products were identified and the reaction mechanism was elucidated. The results provide insight into the complex electrochemical behavior of anthracene.
-
Keywords:
-
Electrochemistry
, - Electrospray,
- Mass spectrometry,
- Online,
- Derivatization
-
-
-
[1]
(1) Crain, P. F. Electrospray Ionization Mass Spectrometry ofNucleic Acids and Their Constituents, In Electrospray Ionization Mass Spectrometry; Cole, R. B. Ed.;Wiley: NewYork, 1997, p 421.
-
[2]
(2) Voyksner, R. D. Combining Liquid Chromatography withElectrospray Mass Spectrometry, In Electrospray Ionization Mass Spectrometry; Cole, R. B. Ed.;Wiley: New York, 1997,p 323.
-
[3]
(3) Severs, J. C.; Smith, R. D. Capillary Electrophoresis:Electrospray Ionization Mass Spectrometry, In Electrospray Ionization Mass Spectrometry; Cole, R. B. Ed.;Wiley: NewYork, 1997, p 343.
-
[4]
(4) Zhou, F. M.; Van Berkel, G. J. Anal. Chem. 1995, 67, 3643. doi: 10.1021/ac00116a005
-
[5]
(5) Xu, X. M.; Lu,W. Z.; Cole, R. B. Anal. Chem. 1996, 68, 4244.doi: 10.1021/ac960362i
-
[6]
(6) Lu,W. Z.; Xu, X. M.; Cole, R. B. Anal. Chem. 1997, 69, 2478.doi: 10.1021/ac9612842
-
[7]
(7) Deng, H. T.; Van Berkel, G. J. Electroanalysis 1999, 11, 857.doi: 10.1002/(SICI)1521-4109(199908)11:12<857::AIDELAN857>3.0.CO;2-1
-
[8]
(8) Diehl, G.; Karst, U. Anal. Bioanal. Chem. 2002, 373, 390. doi: 10.1007/s00216-002-1281-3
-
[9]
(9) Karst, U. Angew. Chem. Int. Edit. 2004, 43, 2476. doi: 10.1002/anie.200301763
-
[10]
(10) Zettersten, C.; Lomoth, R.; Hammarstrom, L.; Sjoberg, P. J. R.;Nyholm, L. J. Electroanal. Chem. 2006, 590, 90. doi: 10.1016/j.jelechem.2006.02.028
-
[11]
(11) Van Berkel, G. J.; Kertesz, V. Anal. Chem. 2007, 79, 5510. doi: 10.1021/ac071944a
-
[12]
(12) Permentier, H. P.; Bruins, A. P.; Bischoff, R. Mini-Rev. Med. Chem. 2008, 8, 46. doi: 10.2174/138955708783331586
-
[13]
(13) Zettersten, C.; Sjoberg, P. J. R.; Nyholm, L. Anal. Chem. 2009,81, 5180. doi: 10.1021/ac802563f
-
[14]
(14) Bond, A. M.; Colton, R.; Da stino, A.; Downard, A. J.;Traeger, J. C. Anal. Chem. 1995, 67, 1691. doi: 10.1021/ac00106a007
-
[15]
(15) Zhang, T. Y.; Palii, S. P.; Eyler, J. R.; Brajter-Toth, A. Anal. Chem. 2002, 74, 1097. doi: 10.1021/ac015543l
-
[16]
(16) Hayen, H.; Karst, U. Anal. Chem. 2003, 75, 4833. doi: 10.1021/ac0346050
-
[17]
(17) Deng, H. T.; Van Berkel, G. J. Anal. Chem. 1999, 71, 4284.doi: 10.1021/ac990527y
-
[18]
(18) Bokman, C. F.; Zettersten, C.; Sjoberg, P. J. R.; Nyholm, L.Anal. Chem. 2004, 76, 2017. doi: 10.1021/ac030388r
-
[19]
(19) Yoshida, K. Electrooxidation in Organic Chemistry;Wiley: NewYork, 1984.
-
[20]
(20) Friend, K. E.; Ohnesorge,W. E. J. Org. Chem. 1963, 28, 2435.doi: 10.1021/jo01044a502
-
[21]
(21) Majeski, E. J.; Stuart, J. D.; Ohnesorg,W. J. Am. Chem. Soc.1968, 90, 633. doi: 10.1021/ja01005a013
-
[22]
(22) Loveland, J.W.; Dimeler, G. R. Anal. Chem. 1961, 33, 1196.doi: 10.1021/ac60177a022
-
[23]
(23) Smith, P. J.; Mann, C. K. J. Org. Chem. 1969, 34, 1821.doi: 10.1021/jo01258a063
-
[24]
(24) Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Nonaqueous Systems; Marcel Dekker: New York, 1970.
-
[25]
(25) Organic Electrochemistry, 4th ed.; Lund, H., Hammerich, O.Eds.; Marcel Dekker: New York, 2001.
-
[26]
(26) Parker, V. D. Acta Chim. Scand. 1970, 24, 2757. doi: 10.3891/acta.chem.scand.24-2757
-
[27]
(27) Parker, V. D. Acta Chim. Scand. 1970, 24, 3151. doi: 10.3891/acta.chem.scand.24-3151
-
[28]
(28) Parker, V. D. Acta Chim. Scand. 1970, 24, 3162. doi: 10.3891/acta.chem.scand.24-3162
-
[29]
(29) Parker, V. D. Accounts Chem. Res. 1984, 17, 243. doi: 10.1021/ar00103a004
-
[30]
(30) (a) Ling, X.; Ding, C. F. Chin. J. Anal. Chem. 2012, accepted.[凌星, 丁传凡. 分析化学, 2012, 40 (10)]
-
[31]
(b) Ling, X.; Ding, C. F. Coaxial Probe for OnlineElectrochemistry/ Electrospray Mass Spectrometry, InInstrumentation: New Developments in Ionization and Sampling II, Proceedings of the 60th ASMS Conference on MassSpectrometry and Allied Topics, Vancouver, Canada, May20-24, 2012; ASMS: Santa Fe, NM, 2012.
-
[32]
(31) Sioda, R. E. J. Phys. Chem. 1968, 72, 2322. doi: 10.1021/j100853a007
-
[33]
(32) Howell, J. O.;Wightman, R. M. J. Phys. Chem. 1984, 88, 3915.doi: 10.1021/j150662a001
-
[34]
(33) Hammerich, O.; Parker, V. D. Advances in Physical Organic Chemistry 1984, 20, 55. doi: 10.1016/S0065-3160(08)60148-3
-
[35]
(34) Mautjana, N. A.; Estes, J.; Eyler, J. R.; Brajter-Toth, A.Electroanalysis 2008, 20, 1959. doi: 10.1002/elan.v20:18
-
[36]
(35) Yeager, H. L.; Kratochv.B. J. Phys. Chem. 1969, 73, 1963.doi: 10.1021/j100726a053
-
[37]
(36) Bard, A. J.; Faulkner, L. R. Electrochemical Methods; 2nd ed.;Wiley: New York, 2001.
-
[38]
(37) Kertesz, V.; Van Berkel, G. J.; Granger, M. C. Anal. Chem.2005, 77, 4366. doi: 10.1021/ac0503411
-
[39]
(38) Mann, C. K. Anal. Chem. 1964, 36, 2424. doi: 10.1021/ac60219a014
-
[40]
(39) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vila, N.Langmuir 2004, 20, 8243. doi: 10.1021/la049194c
-
[41]
(40) Henderson,W.; McIndoe, J. S. Mass Spectrometry of Inorganic, Coordination, and Organometallic Compounds;Wiley:Chichester, 2005.
-
[42]
(41) Suh, J.; Min, D.W. J. Org. Chem. 1991, 56, 5710. doi: 10.1021/jo00019a048
-
[1]
-
-
[1]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[2]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[3]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[4]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[5]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[6]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[7]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[8]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[9]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[10]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[11]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[12]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[13]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[14]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[15]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[16]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[17]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[18]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[19]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[20]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[1]
Metrics
- PDF Downloads(744)
- Abstract views(2307)
- HTML views(28)