Citation:
WANG Xiu-Jun, LONG Mi. Statistical Correction of Heat of Formation Calculated by the O3LYP Method[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201207172
-
The results of density functional theory calculations are known to contain inherent numerical errors caused by various intrinsic approximations. In this paper, O3LYP/6-311+G(3df,2p)//O3LYP/6-31G(d) calculations were used to derive the heats of formation (ΔfHcalcΘ) of 220 small to medium-sized organic molecules, followed by the application of artificial neural network (ANN) and multiple linear regression (MLR) analyses to correct the values. The physical descriptors chosen were ΔfHcalcΘ and zero point energy as well as the total quantities of atoms, hydrogen atoms, 2-center bonds, 2-center antibonds, 1-center valence lone pairs and 1-center core pairs. The ANN and MLR systems were initially constructed using a 180 training set. The trained ANN and MLR systems were subsequently used to predict values of ΔfHcalcΘ for a 40 individual testing set. The results demonstrated that the root mean square (RMS) deviations between the calculated and experimental ΔfHΘ values in the training set were reduced from 24.7 to 11.8 and 13.0 kJ·mol-1 after ANN and MLR corrections, respectively. For the individual testing set, the deviations (RMSD) were reduced from 21.3 to 10.4 and 12.1 kJ·mol-1, respectively. Based on these results, it can be concluded that ANN exhibits superior fitting and predictive abilities compared with MLR.
-
-
-
[1]
(1) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds; Chapman and Hall: New York, 1986.
-
[2]
(2) Yaws, C. L. Chemical Properties Handbook; McGraw-Hill:New York, 1999.
-
[3]
(3) Lide, D. R. CRC Handbook of Chemistry and Physics, 3rd.electronic ed.; BocaRaton: FL, 2000.
-
[4]
(4) Wu, J.; Xu, X. J. Chem. Phys. 2007, 127, 214105. doi: 10.1063/1.2800018
-
[5]
(5) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.Chem. Phys. Lett. 1997, 270, 419. doi: 10.1016/S0009-2614(97)00399-0
-
[6]
(6) Schmitz, L. R.; Chen, K. H.; Labanowski, J.; Allinger, N. L.J. Phys. Org. Chem. 2001, 14, 90. doi: 10.1002/1099-1395(200102)14:2<90::AID-POC330>3.0.CO;2-O
-
[7]
(7) Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J. A.J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/1.460205
-
[8]
(8) Lado-Tourino, I.; Tsobnang, F. Comp. Mater. Sci. 1998, 11, 181.doi: 10.1016/S0927-0256(98)80004-9
-
[9]
(9) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[10]
(10) Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett.2006, 8, 3631. doi: 10.1021/ol061016i
-
[11]
(11) Check, C. E.; Gilbert, T. M. J. Org. Chem. 2005, 70, 9828. doi: 10.1021/jo051545k
-
[12]
(12) Iz rodina, E. I.; Coote, M. L.; Radom, L. J. Phys. Chem. A2005, 109, 7558. doi: 10.1021/jp052021r
-
[13]
(13) Schreiner, P. R.; Fokin, A. A.; Pascal, R. A., Jr.; de Meijere, A.Org. Lett. 2006, 8, 3635. doi: 10.1021/ol0610486
-
[14]
(14) Zhao, Y.; nzalez-Garcia, N.; Truhlar, D. G. J. Phys. Chem. A2005, 109, 2012. doi: 10.1021/jp045141s
-
[15]
(15) Zhang, I. Y.; Luo, Y.; Xu, X. J. Chem. Phys. 2010, 132, 194105.doi: 10.1063/1.3424845
-
[16]
(16) Cohen, A. J.; Handy, N. C. Mol. Phys. 2001, 99, 607. doi: 10.1080/00268970010023435
-
[17]
(17) Yang, K.; Peverati, R.; Truhlar, D. G.; Valero, R. J. Chem. Phys.2011, 135, 044118. doi: 10.1063/1.3607312
-
[18]
(18) Heerdt, G.; Mor n, N. H. Quimica Nova 2011, 34, 868. doi: 10.1590/S0100-40422011000500024
-
[19]
(19) Bochevarov, A. D.; Friesner, R. A.; Lippard, S. J. J. Chem. Theory Comput. 2010, 6, 3735. doi: 10.1021/ct100398m
-
[20]
(20) Dobado, J. A.; mez-Tamayo, J. C.; Calvo-Flores, F. G.;Martinez-Garcia, H.; Cardona,W.;Weiss-Lopez, B.; Ramirez-Rodriguez, O.; Pessoa-Mahana, H.; Araya-Maturana, R. Magn. Reson. Chem. 2011, 49, 358. doi: 10.1002/mrc.2745
-
[21]
(21) Qian, Z. S.; Feng, H.; He, L. N.; Yang,W. J.; Bi, S. P. J. Phys. Chem. A 2009, 113, 5138. doi: 10.1021/jp810632f
-
[22]
(22) Strassner, T.; Taige, M. A. J. Chem. Theory Comput. 2005, 1,848. doi: 10.1021/ct049846+
-
[23]
(23) Baker, J.; Pulay, P. J. Comput. Chem. 2003, 24, 1184. doi: 10.1002/jcc.10280
-
[24]
(24) Curtiss, L. A.; Jones, C.; Trucks, G.W.; Raghavachari, K.;Pople, J. A. J. Chem. Phys. 1990, 93, 2537. doi: 10.1063/1.458892
-
[25]
(25) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182
-
[26]
(26) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.;Pople, J. A. J. Chem. Phys. 1998, 109, 7764. doi: 10.1063/1.477422
-
[27]
(27) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[28]
(28) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Chem. Phys. Lett. 2010, 499, 168. doi: 10.1016/j.cplett.2010.09.012
-
[29]
(29) Dorofeeva, O. V.; Kolesnikova, I. N.; Marochkin, I. I.; Ryzhova,O. N. J. Struct. Chem. 2011, 22, 1303. doi: 10.1007/s11224-011-9827-7
-
[30]
(30) Hu, L. H.;Wang, X. J.;Wong, L. H.; Chen, G. H. J. Chem. Phys. 2003, 119, 11501. doi: 10.1063/1.1630951
-
[31]
(31) Wang, X. J.;Wong, L. H.; Hu, L. H.; Chan, C. Y.; Su, Z. M.;Chen, G. H. J. Phys. Chem. A 2004, 108, 8514. doi: 10.1021/jp047263q
-
[32]
(32) Duan, X. M.; Li, Z. H.; Song, G. L.;Wang,W. N.; Chen, G. H.;Fan, K. N. Chem. Phys. Lett. 2005, 410, 125. doi: 10.1016/j.cplett.2005.05.046
-
[33]
(33) Duan, X. M.; Song, G. L.; Li, Z. H.;Wang, X. J.; Chen, G. H.;Fan, K. N. J. Chem. Phys. 2004, 121, 7086. doi: 10.1063/1.1786582
-
[34]
(34) Yan, G. K.; Li, J. J.; Li, B. R.; Hu, J.; Guo,W. P. J. Theor. Comput. Chem. 2007, 6, 495. doi: 10.1142/S0219633607003118
-
[35]
(35) Zheng, X.; Hu, L.;Wang, X.; Chen, G. Chem. Phys. Lett. 2004,390, 186. doi: 10.1016/j.cplett.2004.04.020
-
[36]
(36) Zhang, J. H.;Wang, X. J. Acta Phys. -Chim. Sin. 2010, 26,188. [张家虎, 王秀军. 物理化学学报, 2010, 26, 188.]doi: 10.3866/PKU.WHXB20100116
-
[37]
(37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2010.
-
[38]
(38) Zheng,W. F.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2000, 40,185. doi: 10.1021/ci980033m
-
[39]
(39) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. doi: 10.1021/ja00226a005
-
[40]
(40) lbraikh, A.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2003, 43,144. doi: 10.1021/ci025516b
-
[1]
-
-
-
[1]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310045
-
[2]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020
-
[3]
Weigang Zhu , Yun Tian , Zhicheng Zhang , Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, doi: 10.12461/PKU.DXHX202404114
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067
-
[5]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202402059
-
[6]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312
-
[7]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240184
-
[8]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108957
-
[9]
Zhenyu Feng , Zhaozhen Cao , Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, doi: 10.3866/PKU.DXHX202311016
-
[10]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, doi: 10.3866/PKU.DXHX202402021
-
[11]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100171
-
[12]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240342
-
[13]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310024
-
[14]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230421
-
[15]
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108606
-
[16]
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.109599
-
[17]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240219
-
[18]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240236
-
[19]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202308032
-
[20]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240298
-
[1]
Metrics
- PDF Downloads(643)
- Abstract views(2097)
- HTML views(80)