Citation:
WANG Xiu-Jun, LONG Mi. Statistical Correction of Heat of Formation Calculated by the O3LYP Method[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201207172
-
The results of density functional theory calculations are known to contain inherent numerical errors caused by various intrinsic approximations. In this paper, O3LYP/6-311+G(3df,2p)//O3LYP/6-31G(d) calculations were used to derive the heats of formation (ΔfHcalcΘ) of 220 small to medium-sized organic molecules, followed by the application of artificial neural network (ANN) and multiple linear regression (MLR) analyses to correct the values. The physical descriptors chosen were ΔfHcalcΘ and zero point energy as well as the total quantities of atoms, hydrogen atoms, 2-center bonds, 2-center antibonds, 1-center valence lone pairs and 1-center core pairs. The ANN and MLR systems were initially constructed using a 180 training set. The trained ANN and MLR systems were subsequently used to predict values of ΔfHcalcΘ for a 40 individual testing set. The results demonstrated that the root mean square (RMS) deviations between the calculated and experimental ΔfHΘ values in the training set were reduced from 24.7 to 11.8 and 13.0 kJ·mol-1 after ANN and MLR corrections, respectively. For the individual testing set, the deviations (RMSD) were reduced from 21.3 to 10.4 and 12.1 kJ·mol-1, respectively. Based on these results, it can be concluded that ANN exhibits superior fitting and predictive abilities compared with MLR.
-
-
-
[1]
(1) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds; Chapman and Hall: New York, 1986.
-
[2]
(2) Yaws, C. L. Chemical Properties Handbook; McGraw-Hill:New York, 1999.
-
[3]
(3) Lide, D. R. CRC Handbook of Chemistry and Physics, 3rd.electronic ed.; BocaRaton: FL, 2000.
-
[4]
(4) Wu, J.; Xu, X. J. Chem. Phys. 2007, 127, 214105. doi: 10.1063/1.2800018
-
[5]
(5) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.Chem. Phys. Lett. 1997, 270, 419. doi: 10.1016/S0009-2614(97)00399-0
-
[6]
(6) Schmitz, L. R.; Chen, K. H.; Labanowski, J.; Allinger, N. L.J. Phys. Org. Chem. 2001, 14, 90. doi: 10.1002/1099-1395(200102)14:2<90::AID-POC330>3.0.CO;2-O
-
[7]
(7) Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J. A.J. Chem. Phys. 1991, 94, 7221. doi: 10.1063/1.460205
-
[8]
(8) Lado-Tourino, I.; Tsobnang, F. Comp. Mater. Sci. 1998, 11, 181.doi: 10.1016/S0927-0256(98)80004-9
-
[9]
(9) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[10]
(10) Wodrich, M. D.; Corminboeuf, C.; Schleyer, P. v. R. Org. Lett.2006, 8, 3631. doi: 10.1021/ol061016i
-
[11]
(11) Check, C. E.; Gilbert, T. M. J. Org. Chem. 2005, 70, 9828. doi: 10.1021/jo051545k
-
[12]
(12) Iz rodina, E. I.; Coote, M. L.; Radom, L. J. Phys. Chem. A2005, 109, 7558. doi: 10.1021/jp052021r
-
[13]
(13) Schreiner, P. R.; Fokin, A. A.; Pascal, R. A., Jr.; de Meijere, A.Org. Lett. 2006, 8, 3635. doi: 10.1021/ol0610486
-
[14]
(14) Zhao, Y.; nzalez-Garcia, N.; Truhlar, D. G. J. Phys. Chem. A2005, 109, 2012. doi: 10.1021/jp045141s
-
[15]
(15) Zhang, I. Y.; Luo, Y.; Xu, X. J. Chem. Phys. 2010, 132, 194105.doi: 10.1063/1.3424845
-
[16]
(16) Cohen, A. J.; Handy, N. C. Mol. Phys. 2001, 99, 607. doi: 10.1080/00268970010023435
-
[17]
(17) Yang, K.; Peverati, R.; Truhlar, D. G.; Valero, R. J. Chem. Phys.2011, 135, 044118. doi: 10.1063/1.3607312
-
[18]
(18) Heerdt, G.; Mor n, N. H. Quimica Nova 2011, 34, 868. doi: 10.1590/S0100-40422011000500024
-
[19]
(19) Bochevarov, A. D.; Friesner, R. A.; Lippard, S. J. J. Chem. Theory Comput. 2010, 6, 3735. doi: 10.1021/ct100398m
-
[20]
(20) Dobado, J. A.; mez-Tamayo, J. C.; Calvo-Flores, F. G.;Martinez-Garcia, H.; Cardona,W.;Weiss-Lopez, B.; Ramirez-Rodriguez, O.; Pessoa-Mahana, H.; Araya-Maturana, R. Magn. Reson. Chem. 2011, 49, 358. doi: 10.1002/mrc.2745
-
[21]
(21) Qian, Z. S.; Feng, H.; He, L. N.; Yang,W. J.; Bi, S. P. J. Phys. Chem. A 2009, 113, 5138. doi: 10.1021/jp810632f
-
[22]
(22) Strassner, T.; Taige, M. A. J. Chem. Theory Comput. 2005, 1,848. doi: 10.1021/ct049846+
-
[23]
(23) Baker, J.; Pulay, P. J. Comput. Chem. 2003, 24, 1184. doi: 10.1002/jcc.10280
-
[24]
(24) Curtiss, L. A.; Jones, C.; Trucks, G.W.; Raghavachari, K.;Pople, J. A. J. Chem. Phys. 1990, 93, 2537. doi: 10.1063/1.458892
-
[25]
(25) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 1997, 106, 1063. doi: 10.1063/1.473182
-
[26]
(26) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.;Pople, J. A. J. Chem. Phys. 1998, 109, 7764. doi: 10.1063/1.477422
-
[27]
(27) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.J. Chem. Phys. 2000, 112, 7374. doi: 10.1063/1.481336
-
[28]
(28) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Chem. Phys. Lett. 2010, 499, 168. doi: 10.1016/j.cplett.2010.09.012
-
[29]
(29) Dorofeeva, O. V.; Kolesnikova, I. N.; Marochkin, I. I.; Ryzhova,O. N. J. Struct. Chem. 2011, 22, 1303. doi: 10.1007/s11224-011-9827-7
-
[30]
(30) Hu, L. H.;Wang, X. J.;Wong, L. H.; Chen, G. H. J. Chem. Phys. 2003, 119, 11501. doi: 10.1063/1.1630951
-
[31]
(31) Wang, X. J.;Wong, L. H.; Hu, L. H.; Chan, C. Y.; Su, Z. M.;Chen, G. H. J. Phys. Chem. A 2004, 108, 8514. doi: 10.1021/jp047263q
-
[32]
(32) Duan, X. M.; Li, Z. H.; Song, G. L.;Wang,W. N.; Chen, G. H.;Fan, K. N. Chem. Phys. Lett. 2005, 410, 125. doi: 10.1016/j.cplett.2005.05.046
-
[33]
(33) Duan, X. M.; Song, G. L.; Li, Z. H.;Wang, X. J.; Chen, G. H.;Fan, K. N. J. Chem. Phys. 2004, 121, 7086. doi: 10.1063/1.1786582
-
[34]
(34) Yan, G. K.; Li, J. J.; Li, B. R.; Hu, J.; Guo,W. P. J. Theor. Comput. Chem. 2007, 6, 495. doi: 10.1142/S0219633607003118
-
[35]
(35) Zheng, X.; Hu, L.;Wang, X.; Chen, G. Chem. Phys. Lett. 2004,390, 186. doi: 10.1016/j.cplett.2004.04.020
-
[36]
(36) Zhang, J. H.;Wang, X. J. Acta Phys. -Chim. Sin. 2010, 26,188. [张家虎, 王秀军. 物理化学学报, 2010, 26, 188.]doi: 10.3866/PKU.WHXB20100116
-
[37]
(37) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2010.
-
[38]
(38) Zheng,W. F.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2000, 40,185. doi: 10.1021/ci980033m
-
[39]
(39) Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. doi: 10.1021/ja00226a005
-
[40]
(40) lbraikh, A.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2003, 43,144. doi: 10.1021/ci025516b
-
[1]
-
-
-
[1]
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310045
-
[2]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020
-
[3]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100052
-
[4]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100081
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067
-
[6]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202402059
-
[7]
Weigang Zhu , Yun Tian , Zhicheng Zhang , Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, doi: 10.12461/PKU.DXHX202404114
-
[8]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230312
-
[9]
Zhenyu Feng , Zhaozhen Cao , Jinhua Zhan . Exploration of Online Training System for Large-Scale Instrument in Open Laboratory of Universities. University Chemistry, doi: 10.3866/PKU.DXHX202311016
-
[10]
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.108957
-
[11]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240184
-
[12]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, doi: 10.12461/PKU.DXHX202407098
-
[13]
Xu Liu , Chengfang Liu , Jie Huang , Xiangchun Li , Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, doi: 10.3866/PKU.DXHX202402021
-
[14]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240395
-
[15]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310024
-
[16]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240342
-
[17]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, doi: 10.1016/j.cjsc.2023.100171
-
[18]
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, doi: 10.1016/j.cclet.2024.110347
-
[19]
Duo Yang , Xiangchun Li , Wenyong Lai . Reform and Practice of a Diversified Teaching Model for Inorganic Chemistry Laboratory Focused on Innovation Ability Cultivation. University Chemistry, doi: 10.12461/PKU.DXHX202406006
-
[20]
Dongyan Tang , Yanqiu Jiang , Su'e Hao , Yunchen Du , Lizhu Zhang , Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, doi: 10.12461/PKU.DXHX202406062
-
[1]
Metrics
- PDF Downloads(643)
- Abstract views(2152)
- HTML views(86)