Citation: HU Si, ZHANG Qing, XIA Zhi,  NG Yan-Jun, XU Jun, DENG Feng, DOU Tao. Catalytic Conversion of Methanol to Propylene over (NH4)2SiF6-Modified Nanosized HZSM-5 Zeolite[J]. Acta Physico-Chimica Sinica, ;2012, 28(11): 2705-2712. doi: 10.3866/PKU.WHXB201207171 shu

Catalytic Conversion of Methanol to Propylene over (NH4)2SiF6-Modified Nanosized HZSM-5 Zeolite

  • Received Date: 25 May 2012
    Available Online: 17 July 2012

    Fund Project: 国家重点基础研究发展计划(973)项目(2012CB215002) (973)项目(2012CB215002) 国家自然科学基金(10979076, 21176255) (10979076, 21176255) 国际科技合作与交流专项项目(2010DFB40440)资助 (2010DFB40440)

  • (NH4)2SiF6-modified nanosized HZSM-5 zeolite was prepared and investigated as a catalyst formethanol to propylene conversion. The effects of this modification on the framework, textural propertiesand acidity of both the parent and the modified HZSM-5 zeolite were investigated by powder X-raydiffraction (XRD), 27Al magic angle spinning nuclear magnetic resonance (27Al MAS NMR), X-rayfluorescence (XRF), X-ray photoelectron spectroscopy (XPS), N2 adsorption, transmission electronmicroscopy (TEM), temperature-programmed desorption of ammonia (NH3-TPD), and infraredspectroscopy of adsorbed pyridine (Py-IR). The catalytic performance of these materials on the methanolto propylene (MTP) conversion process was tested under operating conditions of T=450℃, p=0.1 MPa(pMeOH=50 KPa) and WHSV=1 h-1. The results showed that surface aluminum on the nanosized ZSM-5zeolite could be selectively removed by the (NH4)2SiF6 solution and that the number of acidic sites on theHZSM-5 zeolite gradually decreased with increasing (NH4)2SiF6 concentration. Moreover, after modification with an optimally concentrated (NH4)2SiF6 solution, an obvious increase in specific surface area as well asmesopore volume was observed for the nanosized HZSM-5 with a resulting dramatic improvement in thecatalytic performance of this material for the MTP reaction. Both the propylene selectivity and propylene/ethylene (P/E) mass ratio resulting from use of the modified HZSM-5 increased significantly to 45.1% and8.0, as compared to results of 28.8% and 2.6 obtained with the original material. In addition, the catalyticlifespan of the modified zeolite was double that of the original.

  • 加载中
    1. [1]

      (1) Inagaki, S.; Takechi, K.; Kubota, Y. Chem. Commun. 2010, 46,2662. doi: 10.1039/b925408k

    2. [2]

      (2) Schneider, M.; Schmidt, F.; Burgfels, G.; Buchold, H.; Möller,F.W. Process for Preparing Lower Olefins. Eur. Pat. 0448000,1991.

    3. [3]

      (3) Koempel, H.; Liebner,W. Lurgi's Methanol to Propylene (MTP)Report on a SuccessfulCommercialisation. In Studies in Surface Science and Catalysis; Noronha, F. B., Schmal, M.,Sousa-Aguiar, E. F. Eds.; Elsevier: Frankfurt, 2007; Vol. 167, pp261-267.

    4. [4]

      (4) Zhao, T. S.; Takemoto, T.; Tsubaki, N. Catal. Commun. 2006, 7,647. doi: 10.1016/j.catcom.2005.11.009

    5. [5]

      (5) Wu,W. Z.; Guo,W. Y.; Xiao,W. D.; Luo, M. Chem. Eng. Sci.2011, 66, 4722. doi: 10.1016/j.ces.2011.06.036

    6. [6]

      (6) Bjørgen, M.; Joensen, F.; Lillerud, K. P.; Olsbye, U.; Svelle, S.Catal. Today 2009, 142, 90. doi: 10.1016/j.cattod.2009.01.015

    7. [7]

      (7) Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.;Bonino, F.; Palumbo, L.; Bordiga, S.;Olsbye, U. J. Catal. 2007,249, 195. doi: 10.1016/j.jcat.2007.04.006

    8. [8]

      (8) Lee, K. Y.; Lee, H. K.; Ihm, S. K. Top. Catal. 2010, 53, 247.doi: 10.1007/s11244-009-9412-0

    9. [9]

      (9) Mei, C. S.;Wen, P. Y.; Liu, Z. C.; Liu, H. X.;Wang, Y. D.; Yang,W. M.; Xie, Z. K.; Hua,W. M.; Gao, Z. J. Catal. 2008, 258,243. doi: 10.1016/j.jcat.2008.06.019

    10. [10]

      (10) Liu, J.; Zhang, C. X.; Shen, Z. H.; Hua,W. M.; Tang, Y.; Shen,W.; Yue, Y. H.; Xu, H. L. Catal. Commun. 2009, 10, 1506. doi: 10.1016/j.catcom.2009.04.004

    11. [11]

      (11) Sun, C.; Du, J. M.; Liu, J.; Yang, Y. S.; Ren, N.; Shen,W.; Xu,H. L.; Tang, Y. Chem. Commun.2010, 46, 2671. doi: 10.1039/b925850g

    12. [12]

      (12) Kim, J.; Choi, M.; Ryoo, R. J. Catal. 2010, 269, 219. doi: 10.1016/j.jcat.2009.11.009

    13. [13]

      (13) Firoozi, M.; Baghalha, M.; Asadi, M. Catal. Commun. 2009, 10,1582. doi: 10.1016/j.catcom.2009.04.021

    14. [14]

      (14) Guo, Q. S.; Mao, D. S.; Lao, Y. P.; Lu, G. Z. Chin. J. Catal.2009, 30, 1248. [郭强胜, 毛东森, 劳嫣萍, 卢冠忠. 催化学报, 2009, 30, 1248.]

    15. [15]

      (15) Mao, D. S.; Guo, Q. S.; Meng, T. Acta Phys. -Chim. Sin. 2010,26, 338. [毛东森, 郭强胜, 孟涛. 物理化学学报, 2010, 26,338.] doi: 10.3866/PKU.WHXB20100208

    16. [16]

      (16) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.Nature 2009, 461, 246. doi: 10.1038/nature08288

    17. [17]

      (17) Min, H. K.; Park, M. B.; Hong, S. B. J. Catal. 2010, 271, 186.doi: 10.1016/j.jcat.2010.01.012

    18. [18]

      (18) Triantafillidis, C. S.; Vlessidis, A. G.; Nalbandian, L.;Evmiridis, N. P. Microporous Mesoporous Mat. 2001, 47, 369.doi: 10.1016/S1387-1811(01)00399-7

    19. [19]

      (19) Han, S.; Shihabi, D. S.; Chang, C. D. J. Catal. 2000, 196, 375.doi: 10.1006/jcat.2000.3037

    20. [20]

      (20) Kumar, S.; Sinha, A. K.; Hegde, S. G.; Sivasanker, S. J. Mol. Catal. A 2000, 154, 115. doi: 10.1016/S1381-1169(99)00360-X

    21. [21]

      (21) Zhao, G. L.; Teng, J.W.; Xie, Z. K.; Tang, Y.; Yang,W. M.;Chen, Q. L. Chin. J. Catal. 2005, 26, 1083. [赵国良, 滕加伟,谢在库, 唐颐, 杨为明, 陈庆龄. 催化学报, 2005, 26, 1083.]

    22. [22]

      (22) Wu,W.;Wu,W. G.; Li, L. F.; Yang,W.;Wu, G. Acta Petrolei Sinica (Petroleum Processing Section) 2010, 26, 189.[吴伟, 吴维果, 李凌飞, 杨巍, 武光. 石油学报(石油加工), 2010, 26, 189.]

    23. [23]

      (23) Song, M. J.; Zou, C. L.; Niu, G. X.; Zhao, D. Y. Chin. J. Catal.2012, 33, 140. [宋明娟, 邹成龙,牛国兴, 赵东元. 催化学报,2012, 33, 140.] doi: 10.1016/S1872-2067(10)60283-5

    24. [24]

      (24) van Grieken, R.; Sotelo, J. L.; Menéndez, J. M.; Melero, J. A.Microporous Mesoporous Mat. 2000, 39, 135. doi: 10.1016/S1387-1811(00)00190-6

    25. [25]

      (25) Qin, Z. X.; Shen, B. J.; Gao, X. H.; Lin, F.;Wang, B. J.; Xu, C.M. J. Catal. 2011, 278, 266. doi: 10.1016/j.jcat.2010.12.013

    26. [26]

      (26) Svelle, S.; Joensen, F.; Nerlov, J.; Olsbye, U.; Lillerud, K. P.;Kolboe, S.; Bjørgen, M. J. Am. Chem. Soc. 2006, 128, 14770.doi: 10.1021/ja065810a


  • 加载中
    1. [1]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    12. [12]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    14. [14]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    15. [15]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    17. [17]

      Zhi FANGLiang SUNMingze ZHENGWenhao SHENGHongliang HUANGChongli ZHONG . An aluminum-based metal-organic framework with slit pores for the efficient separation and recovery of electronic specialty gas C3F8. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2054-2062. doi: 10.11862/CJIC.20250096

    18. [18]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(831)
  • Abstract views(2444)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return