Citation: LUO Fang, GAO Jian, CHENG Yuan-Hua, CUI Wei, JI Ming-Juan. Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics Simulations and Free Energy Calculations[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201207063 shu

Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics Simulations and Free Energy Calculations

  • Received Date: 7 May 2012
    Available Online: 6 July 2012

    Fund Project: 国家自然科学基金(21173264) (21173264) 科技部重大专项(2009ZX09501-011) (2009ZX09501-011)中国科学院知识创新工程基金(ZNWH-2011-011)资助项目 (ZNWH-2011-011)

  • Sulfonium ion glucosidase inhibitors such as kotalanol (SK) and de-O-sulfonated kotalanol (DSK) are potential drug candidates for the treatment of type II diabetes, with no serious toxicity or side effects. Experimental binding assays against glucosidase show that the activity of DSK is slightly higher than that of SK, while the activity of the nitrogen analogue of de-O-sulfonated kotalanol (DSN) is ~1500-fold higher than that of the nitrogen analog of kotalanol (SN). Here, the binding mechanisms of four representative inhibitors of glucoamylase, SK, DSK, and their two nitrogen analogues, were explored in an integrated modeling study combining molecular dynamics (MD) simulations, binding free energy calculations, and binding free energy decomposition analysis. Our simulations highlight the significant impact of the combination of nitrogen substitution and sulfate anion group. Nitrogen substitution in the five-membered ring leads to the overturning of the polyhydroxylated chain, originating from the shorter bond length of N―C compared with S ― C, while the sulfate anion group restrains the freedom of the polyhydroxylated chain. These cumulative effects are able to significantly change the binding conformation of the inhibitor and substantially impair interactions between the inhibitor and glucosidase. The structural insights obtained in this study are expected to be valuable for increased understanding of the binding mechanism of sulfonium ion glucosidase inhibitors and future design of more potent glucosidase inhibitors.

  • 加载中
    1. [1]

      (1) Nichols, B. L.; Avery, S.; Sen, P.; Swallow, D. M.; Hahn, D.;Sterchi, E. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1432. doi: 10.1073/pnas.0237170100

    2. [2]

      (2) Auricchio, S.; Semenza, G.; Rubino, A. Biochim. Biophys. Acta1965, 96, 498.

    3. [3]

      (3) Semenza, G.; Auricchio, S.; Rubino, A. Biochim. Biophys. Acta1965, 96, 487.

    4. [4]

      (4) Holman, R. R.; Cull, C. A.; Turner, R. C. Diabetes Care 1999,22, 960. doi: 10.2337/diacare.22.6.960

    5. [5]

      (5) Silva, C. H.; Taft, C. A. J. Biomol. Struct. Dyn. 2004, 22, 59.doi: 10.1080/07391102.2004.10506981

    6. [6]

      (6) Withers, S. G.; Namchuk, M.; Mosi, R. Potent GlycosideInhibitors: Transition State Mimics or Simply FortuitousBinders? In Iminosugars as Glycosidase Inhibitors; Arnold, E.S. Ed.;Wiley: New York, 2004; p 188.

    7. [7]

      (7) Matsuda, H.; Murakami, T.; Yashiro, K.; Yamahara, J.;Yoshikawa, M. Chem. Pharm. Bull. 1999, 47, 1725. doi: 10.1248/cpb.47.1725

    8. [8]

      (8) Wang, P. Y.; Kaneko, T.;Wang, Y.; Sato, A. Hepatology 1999,29, 161. doi: 10.1002/hep.510290109

    9. [9]

      (9) Yoshikawa, M.; Xu, F. M.; Nakamura, S.;Wang, T.; Matsuda,H.; Tanabe, G.; Muraoka, O. Heterocycles 2008, 75, 1397. doi: 10.3987/COM-07-11315

    10. [10]

      (10) Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.;Yamahara, J.; Tanabe, G.; Muraoka, O. Tetrahedron Lett. 1997,38, 8367. doi: 10.1016/S0040-4039(97)10270-2

    11. [11]

      (11) Matsuda, H.; Li, Y.; Murakami, T.; Matsumura, N.; Yamahara,J.; Yoshikawa, M. Chem. Pharm. Bull. 1998, 46, 1399. doi: 10.1248/cpb.46.1399

    12. [12]

      (12) Muraoka, O.; Xie,W. J.; Tanabe, G.; Amer, M. F. A.;Minematsu, T.; Yoshikawa, M. Tetrahedron Lett. 2008, 49,7315. doi: 10.1016/j.tetlet.2008.10.036

    13. [13]

      (13) Minami, Y.; Kurlyarna, C.; Ikeda, K.; Kato, A.; Takebayashi, K.;Adachi, I.; Fleet, G.W. J.; Kettawan, A.; Karnoto, T.; Asano, N.Bioorg. Med. Chem. 2008, 16, 2734. doi: 10.1016/j.bmc.2008.01.032

    14. [14]

      (14) Mohan, S.; Pinto, B. M. Carbohydr. Res. 2007, 342, 1551. doi: 10.1016/j.carres.2007.05.014

    15. [15]

      (15) Sim, L.; Jayakanthan, K.; Mohan, S.; Nasi, R.; Johnston, B. D.;Pinto, B. M.; Rose, D. R. Biochemistry-Us 2010, 49, 443. doi: 10.1021/bi9016457

    16. [16]

      (16) Mohan, S.; Jayakanthan, K.; Nasi, R.; Kuntz, D. A.; Rose, D.R.; Pinto, B. M. Org. Lett. 2010, 12, 1088. doi: 10.1021/ol100080m

    17. [17]

      (17) Yuasa, H.; Izumi, M.; Hashimoto, H. Curr. Top. Med. Chem.2009, 9, 76. doi: 10.2174/156802609787354270

    18. [18]

      (18) Case, D.; Darden, T. A.; Cheatham, T. E.; Simmerling, C.;Wang, J.; Duke, R.; Luo, R.; Crowley, M.;Walker, R.; Zhang,W.; Merz, K. M.;Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.;Kolossváry, I.;Wong, K. F.; Paesani, F.; Vanicek, J.;Wu, X.;Brozell, S.; Steinbrecher, T.; hlke, H.; Yang, L.; Tan, C.;Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M.G.; Sagui, C.; Babin, V.; Kollman, P. Amber 11; University ofCalifornia: San Francisco, 2010.

    19. [19]

      (19) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision B.03; Gaussian Inc.:Wallingford, CT, 2004.

    20. [20]

      (20) Bayly, C. I.; Cieplak, P.; Cornell,W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269. doi: 10.1021/j100142a004

    21. [21]

      (21) Wang, J. M.;Wolf, R. M.; Caldwell, J.W.; Kollman, P. A.; Case,D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035

    22. [22]

      (22) Duan, Y.;Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G. M.;Zhang,W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.;Wang, J. M.; Kollman, P. J. Comput. Chem. 2003, 24, 1999. doi: 10.1002/jcc.10349

    23. [23]

      (23) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    24. [24]

      (24) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,10089. doi: 10.1063/1.464397

    25. [25]

      (25) Eslami, H.; Mojahedi, F.; Moghadasi, J. J. Chem. Phys. 2010,133, 084105. doi: 10.1063/1.3474951

    26. [26]

      (26) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. doi: 10.1016/0021-9991(77)90098-5

    27. [27]

      (27) Wang, J.; Hou, T.; Xu, X. Curr. Comput. Aided. Drug. Des.2006, 2, 287. doi: 10.2174/157340906778226454

    28. [28]

      (28) Kuhn, B.; Kollman, P. A. J. Med. Chem. 2000, 43, 3786. doi: 10.1021/jm000241h

    29. [29]

      (29) Huo, S.;Wang, J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D.J. Med. Chem. 2002, 45, 1412. doi: 10.1021/jm010338j

    30. [30]

      (30) Hou, T.; Yu, R. J. Med. Chem. 2007, 50, 1177. doi: 10.1021/jm0609162

    31. [31]

      (31) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. J. Med. Chem.2005, 48, 4040. doi: 10.1021/jm049081q

    32. [32]

      (32) Hou, T.;Wang, J.; Li, Y.;Wang,W. J. Comput. Chem. 2011, 32,866. doi: 10.1002/jcc.21666

    33. [33]

      (33) Hou, T. J.; Xu, Z.; Zhang,W.; McLaughlin,W. A.; Case, D. A.;Xu, Y.;Wang,W. Mol. Cell. Proteomics 2009, 8, 639. doi: 10.1074/mcp.M800450-MCP200

    34. [34]

      (34) Hou, T. J.; Zhang,W.; Case, D. A.;Wang,W. J. Mol. Biol. 2008,376, 1201. doi: 10.1016/j.jmb.2007.12.054

    35. [35]

      (35) Hou, T. J.; Zhang,W.; Xu, X. J. J. Phys. Chem. B 2001, 105,5304. doi: 10.1021/jp0044476

    36. [36]

      (36) Hou, T. J.; Zhu, L. L.; Chen, L. R.; Xu, X. J. J. Chem. Inf. Comp. Sci. 2003, 43, 273. doi: 10.1021/ci025552a

    37. [37]

      (37) Wang, J. M.; Morin, P.;Wang,W.; Kollman, P. A. J. Am. Chem. Soc. 2001, 123, 5221. doi: 10.1021/ja003834q

    38. [38]

      (38) Hou, T.;Wang, J.; Li, Y.;Wang,W. J. Chem. Inf. Model. 2011,51, 69. doi: 10.1021/ci100275a

    39. [39]

      (39) Still,W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.J. Am. Chem. Soc. 1990, 112, 6127. doi: 10.1021/ja00172a038

    40. [40]

      (40) Zhang,W.; Hou, T. J.; Qiao, X. B.; Xu, X. J. Acta Phys. -Chim. Sin. 2003, 19, 289. [章威, 侯廷军, 乔学斌, 徐筱杰. 物理化学学报, 2003, 19, 289.] doi: 10.3866/PKU.WHXB20030401

    41. [41]

      (41) Weiser, J.; Shenkin, P. S.; Still,W. C. J. Comput. Chem. 1999,20, 217. doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A

    42. [42]

      (42) Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383.doi: 10.1002/prot.20033

    43. [43]

      (43) hlke, H.; Kiel, C.; Case, D. A. J. Mol. Biol. 2003, 330, 891.doi: 10.1016/S0022-2836(03)00610-7

    44. [44]

      (44) Sim, L.; Quezada-Calvillo, R.; Sterchi, E. E.; Nichols, B. L.;Rose, D. R. J. Mol. Biol. 2008, 375, 782. doi: 10.1016/j.jmb.2007.10.069

    45. [45]

      (45) Hou, T.; Qiao, X.; Zhang,W.; Xu, X. J. Phys. Chem. B 2002,106, 11295. doi: 10.1021/jp025595u

    46. [46]

      (46) Brady, G. P.; Sharp, K. A. J. Mol. Biol. 1995, 254, 77. doi: 10.1006/jmbi.1995.0600

    47. [47]

      (47) Yuasa, H.; Saotome, C.; Kanie, O. Trends Glycosci. Glycotechnol. 2002, 14, 231.

    48. [48]

      (48) Eskandari, R.; Jones, K.; Rose, D. R.; Pinto, B. M. Chem. Commun. 2011, 47, 9134. doi: 10.1039/c1cc13052h

    49. [49]

      (49) Rejto, P. A.; Verkhivker, G. M. Proteins 1997, 28, 313. doi: 10.1002/(SICI)1097-0134(199707)28:3<313::AID-PROT2>3.0.CO;2-D

    50. [50]

      (50) Pujadas, G.; Palau, J. Protein Sci. 2001, 10, 1645. doi: 10.1110/ps.8201


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, doi: 10.12461/PKU.DXHX202405073

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202309063

    10. [10]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, doi: 10.3866/PKU.DXHX202307008

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, doi: 10.3866/PKU.DXHX202306043

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(816)
  • Abstract views(2407)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return