Citation:
LUO Fang, GAO Jian, CHENG Yuan-Hua, CUI Wei, JI Ming-Juan. Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics Simulations and Free Energy Calculations[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201207063
-
Sulfonium ion glucosidase inhibitors such as kotalanol (SK) and de-O-sulfonated kotalanol (DSK) are potential drug candidates for the treatment of type II diabetes, with no serious toxicity or side effects. Experimental binding assays against glucosidase show that the activity of DSK is slightly higher than that of SK, while the activity of the nitrogen analogue of de-O-sulfonated kotalanol (DSN) is ~1500-fold higher than that of the nitrogen analog of kotalanol (SN). Here, the binding mechanisms of four representative inhibitors of glucoamylase, SK, DSK, and their two nitrogen analogues, were explored in an integrated modeling study combining molecular dynamics (MD) simulations, binding free energy calculations, and binding free energy decomposition analysis. Our simulations highlight the significant impact of the combination of nitrogen substitution and sulfate anion group. Nitrogen substitution in the five-membered ring leads to the overturning of the polyhydroxylated chain, originating from the shorter bond length of N―C compared with S ― C, while the sulfate anion group restrains the freedom of the polyhydroxylated chain. These cumulative effects are able to significantly change the binding conformation of the inhibitor and substantially impair interactions between the inhibitor and glucosidase. The structural insights obtained in this study are expected to be valuable for increased understanding of the binding mechanism of sulfonium ion glucosidase inhibitors and future design of more potent glucosidase inhibitors.
-
-
-
[1]
(1) Nichols, B. L.; Avery, S.; Sen, P.; Swallow, D. M.; Hahn, D.;Sterchi, E. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 1432. doi: 10.1073/pnas.0237170100
-
[2]
(2) Auricchio, S.; Semenza, G.; Rubino, A. Biochim. Biophys. Acta1965, 96, 498.
-
[3]
(3) Semenza, G.; Auricchio, S.; Rubino, A. Biochim. Biophys. Acta1965, 96, 487.
-
[4]
(4) Holman, R. R.; Cull, C. A.; Turner, R. C. Diabetes Care 1999,22, 960. doi: 10.2337/diacare.22.6.960
-
[5]
(5) Silva, C. H.; Taft, C. A. J. Biomol. Struct. Dyn. 2004, 22, 59.doi: 10.1080/07391102.2004.10506981
-
[6]
(6) Withers, S. G.; Namchuk, M.; Mosi, R. Potent GlycosideInhibitors: Transition State Mimics or Simply FortuitousBinders? In Iminosugars as Glycosidase Inhibitors; Arnold, E.S. Ed.;Wiley: New York, 2004; p 188.
-
[7]
(7) Matsuda, H.; Murakami, T.; Yashiro, K.; Yamahara, J.;Yoshikawa, M. Chem. Pharm. Bull. 1999, 47, 1725. doi: 10.1248/cpb.47.1725
-
[8]
(8) Wang, P. Y.; Kaneko, T.;Wang, Y.; Sato, A. Hepatology 1999,29, 161. doi: 10.1002/hep.510290109
-
[9]
(9) Yoshikawa, M.; Xu, F. M.; Nakamura, S.;Wang, T.; Matsuda,H.; Tanabe, G.; Muraoka, O. Heterocycles 2008, 75, 1397. doi: 10.3987/COM-07-11315
-
[10]
(10) Yoshikawa, M.; Murakami, T.; Shimada, H.; Matsuda, H.;Yamahara, J.; Tanabe, G.; Muraoka, O. Tetrahedron Lett. 1997,38, 8367. doi: 10.1016/S0040-4039(97)10270-2
-
[11]
(11) Matsuda, H.; Li, Y.; Murakami, T.; Matsumura, N.; Yamahara,J.; Yoshikawa, M. Chem. Pharm. Bull. 1998, 46, 1399. doi: 10.1248/cpb.46.1399
-
[12]
(12) Muraoka, O.; Xie,W. J.; Tanabe, G.; Amer, M. F. A.;Minematsu, T.; Yoshikawa, M. Tetrahedron Lett. 2008, 49,7315. doi: 10.1016/j.tetlet.2008.10.036
-
[13]
(13) Minami, Y.; Kurlyarna, C.; Ikeda, K.; Kato, A.; Takebayashi, K.;Adachi, I.; Fleet, G.W. J.; Kettawan, A.; Karnoto, T.; Asano, N.Bioorg. Med. Chem. 2008, 16, 2734. doi: 10.1016/j.bmc.2008.01.032
-
[14]
(14) Mohan, S.; Pinto, B. M. Carbohydr. Res. 2007, 342, 1551. doi: 10.1016/j.carres.2007.05.014
-
[15]
(15) Sim, L.; Jayakanthan, K.; Mohan, S.; Nasi, R.; Johnston, B. D.;Pinto, B. M.; Rose, D. R. Biochemistry-Us 2010, 49, 443. doi: 10.1021/bi9016457
-
[16]
(16) Mohan, S.; Jayakanthan, K.; Nasi, R.; Kuntz, D. A.; Rose, D.R.; Pinto, B. M. Org. Lett. 2010, 12, 1088. doi: 10.1021/ol100080m
-
[17]
(17) Yuasa, H.; Izumi, M.; Hashimoto, H. Curr. Top. Med. Chem.2009, 9, 76. doi: 10.2174/156802609787354270
-
[18]
(18) Case, D.; Darden, T. A.; Cheatham, T. E.; Simmerling, C.;Wang, J.; Duke, R.; Luo, R.; Crowley, M.;Walker, R.; Zhang,W.; Merz, K. M.;Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.;Kolossváry, I.;Wong, K. F.; Paesani, F.; Vanicek, J.;Wu, X.;Brozell, S.; Steinbrecher, T.; hlke, H.; Yang, L.; Tan, C.;Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M.G.; Sagui, C.; Babin, V.; Kollman, P. Amber 11; University ofCalifornia: San Francisco, 2010.
-
[19]
(19) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision B.03; Gaussian Inc.:Wallingford, CT, 2004.
-
[20]
(20) Bayly, C. I.; Cieplak, P.; Cornell,W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269. doi: 10.1021/j100142a004
-
[21]
(21) Wang, J. M.;Wolf, R. M.; Caldwell, J.W.; Kollman, P. A.; Case,D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035
-
[22]
(22) Duan, Y.;Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G. M.;Zhang,W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.;Wang, J. M.; Kollman, P. J. Comput. Chem. 2003, 24, 1999. doi: 10.1002/jcc.10349
-
[23]
(23) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869
-
[24]
(24) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,10089. doi: 10.1063/1.464397
-
[25]
(25) Eslami, H.; Mojahedi, F.; Moghadasi, J. J. Chem. Phys. 2010,133, 084105. doi: 10.1063/1.3474951
-
[26]
(26) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. doi: 10.1016/0021-9991(77)90098-5
-
[27]
(27) Wang, J.; Hou, T.; Xu, X. Curr. Comput. Aided. Drug. Des.2006, 2, 287. doi: 10.2174/157340906778226454
-
[28]
(28) Kuhn, B.; Kollman, P. A. J. Med. Chem. 2000, 43, 3786. doi: 10.1021/jm000241h
-
[29]
(29) Huo, S.;Wang, J.; Cieplak, P.; Kollman, P. A.; Kuntz, I. D.J. Med. Chem. 2002, 45, 1412. doi: 10.1021/jm010338j
-
[30]
(30) Hou, T.; Yu, R. J. Med. Chem. 2007, 50, 1177. doi: 10.1021/jm0609162
-
[31]
(31) Kuhn, B.; Gerber, P.; Schulz-Gasch, T.; Stahl, M. J. Med. Chem.2005, 48, 4040. doi: 10.1021/jm049081q
-
[32]
(32) Hou, T.;Wang, J.; Li, Y.;Wang,W. J. Comput. Chem. 2011, 32,866. doi: 10.1002/jcc.21666
-
[33]
(33) Hou, T. J.; Xu, Z.; Zhang,W.; McLaughlin,W. A.; Case, D. A.;Xu, Y.;Wang,W. Mol. Cell. Proteomics 2009, 8, 639. doi: 10.1074/mcp.M800450-MCP200
-
[34]
(34) Hou, T. J.; Zhang,W.; Case, D. A.;Wang,W. J. Mol. Biol. 2008,376, 1201. doi: 10.1016/j.jmb.2007.12.054
-
[35]
(35) Hou, T. J.; Zhang,W.; Xu, X. J. J. Phys. Chem. B 2001, 105,5304. doi: 10.1021/jp0044476
-
[36]
(36) Hou, T. J.; Zhu, L. L.; Chen, L. R.; Xu, X. J. J. Chem. Inf. Comp. Sci. 2003, 43, 273. doi: 10.1021/ci025552a
-
[37]
(37) Wang, J. M.; Morin, P.;Wang,W.; Kollman, P. A. J. Am. Chem. Soc. 2001, 123, 5221. doi: 10.1021/ja003834q
-
[38]
(38) Hou, T.;Wang, J.; Li, Y.;Wang,W. J. Chem. Inf. Model. 2011,51, 69. doi: 10.1021/ci100275a
-
[39]
(39) Still,W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.J. Am. Chem. Soc. 1990, 112, 6127. doi: 10.1021/ja00172a038
-
[40]
(40) Zhang,W.; Hou, T. J.; Qiao, X. B.; Xu, X. J. Acta Phys. -Chim. Sin. 2003, 19, 289. [章威, 侯廷军, 乔学斌, 徐筱杰. 物理化学学报, 2003, 19, 289.] doi: 10.3866/PKU.WHXB20030401
-
[41]
(41) Weiser, J.; Shenkin, P. S.; Still,W. C. J. Comput. Chem. 1999,20, 217. doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
-
[42]
(42) Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383.doi: 10.1002/prot.20033
-
[43]
(43) hlke, H.; Kiel, C.; Case, D. A. J. Mol. Biol. 2003, 330, 891.doi: 10.1016/S0022-2836(03)00610-7
-
[44]
(44) Sim, L.; Quezada-Calvillo, R.; Sterchi, E. E.; Nichols, B. L.;Rose, D. R. J. Mol. Biol. 2008, 375, 782. doi: 10.1016/j.jmb.2007.10.069
-
[45]
(45) Hou, T.; Qiao, X.; Zhang,W.; Xu, X. J. Phys. Chem. B 2002,106, 11295. doi: 10.1021/jp025595u
-
[46]
(46) Brady, G. P.; Sharp, K. A. J. Mol. Biol. 1995, 254, 77. doi: 10.1006/jmbi.1995.0600
-
[47]
(47) Yuasa, H.; Saotome, C.; Kanie, O. Trends Glycosci. Glycotechnol. 2002, 14, 231.
-
[48]
(48) Eskandari, R.; Jones, K.; Rose, D. R.; Pinto, B. M. Chem. Commun. 2011, 47, 9134. doi: 10.1039/c1cc13052h
-
[49]
(49) Rejto, P. A.; Verkhivker, G. M. Proteins 1997, 28, 313. doi: 10.1002/(SICI)1097-0134(199707)28:3<313::AID-PROT2>3.0.CO;2-D
-
[50]
(50) Pujadas, G.; Palau, J. Protein Sci. 2001, 10, 1645. doi: 10.1110/ps.8201
-
[1]
-
-
-
[1]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, doi: 10.3866/PKU.DXHX202308097
-
[2]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, doi: 10.12461/PKU.DXHX202405073
-
[3]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309003
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202310029
-
[5]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, doi: 10.3866/PKU.DXHX202311093
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, doi: 10.3866/PKU.DXHX202308044
-
[9]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, doi: 10.3866/PKU.DXHX202402018
-
[10]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240362
-
[11]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202309063
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, doi: 10.12461/PKU.DXHX202403048
-
[14]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, doi: 10.3866/PKU.DXHX202307008
-
[15]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311026
-
[16]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202403028
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, doi: 10.3866/PKU.DXHX202309053
-
[19]
Xiao Liu , Guangzhong Cao , Mingli Gao , Hong Wu , Hongyan Feng , Chenxiao Jiang , Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, doi: 10.3866/PKU.DXHX202306043
-
[20]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, doi: 10.3866/PKU.DXHX202309073
-
[1]
Metrics
- PDF Downloads(816)
- Abstract views(2450)
- HTML views(37)