Citation: WANG Zhen-Po, LIU Wen, WANG Yue, ZHAO Chun-Song, ZHANG Shu-Ping, CHEN Ji-Tao, ZHOU Heng-Hui, ZHANG Xin-Xiang. Synthesis and Characterization of Mg and Ti Ions Co-Doped Lithium Iron Phosphate and Its Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2012, 28(09): 2084-2090. doi: 10.3866/PKU.WHXB201207043 shu

Synthesis and Characterization of Mg and Ti Ions Co-Doped Lithium Iron Phosphate and Its Lithium-Ion Batteries

  • Received Date: 20 April 2012
    Available Online: 4 July 2012

    Fund Project: 国家自然科学基金(61004092) (61004092)国家高技术研究发展计划项目(863) (2009AA035200)资助 (863) (2009AA035200)

  • Mg and Ti ions co-doped (Li0.98Mg0.01)(Fe0.98Ti0.01)PO4/C cathode material for lithium-ion batteries was prepared by a solid-state method under N2 atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge-discharge test. Results indicated that Mg and Ti ions co-doping remarkably improved the electrochemical performance of LiFePO4, including rate capacity, temperature behavior, and cycling stability. Discharge capacities of 154.7 and 146.9 mAh·g-1 were obtained at the rates of 0.2C and 1C for half-cell tests, respectively. For 60 Ah full-cell tests, 100% of 1C capacity was maintained even at 3C rate, 89.7% and 63.1% of initial capacity at room temperature were retained at 0 and -20 °C, respectively. 89% capacity retention remained after 2000 cycles at room temperature, presenting excellent cycle stability. This investigation suggests that the present co-doping material and the resulting battery possess large discharge capacity and excellent cycling performance, making it applicable in electric vehicle (EV)/hybrid electric vehicle (HEV) and energy storage systems on a large scale.

  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571

    2. [2]

      (2) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. doi: 10.1038/35104644

    3. [3]

      (3) Yuan, L. X.;Wang, Z. H.; Zhang,W. X.; Hu, X. L.; Chen, J. T.;Huang, Y. H.; odenough, J. B. Energy & Environmental Science 2011, 4, 269. doi: 10.1039/c0ee00029a

    4. [4]

      (4) Zhou, H.; Upreti, S.; Chernova, N. A.; Hautier, G.; Ceder, G.;Whittingham, M. S. Chem. Mater. 2011, 23, 293. doi: 10.1021/cm102922q

    5. [5]

      (5) Wang, Y. G.; He, P.; Zhou, H. S. Energy & Environmental Science 2011, 4, 805. doi: 10.1039/c0ee00176g

    6. [6]

      (6) Andersson, A. S.; Thomas, J. O. Journal of Power Sources2001, 97-98, 498.

    7. [7]

      (7) Okada, S.; Sawa, S.; Egashira, M.; Yamaki, J.; Tabuchi, M.;Kageyama, H.; Konishi, T.; Yoshino, A. Journal of Power Sources 2001, 97, 430. doi: 10.1016/S0378-7753(01)00631-0

    8. [8]

      (8) Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics2002, 148, 45. doi: 10.1016/S0167-2738(02)00134-0

    9. [9]

      (9) Ouyang, C. Y.; Shi, S. Q.;Wang, Z. X.; Huang, X. J.; Chen, L.Q. Physical Review B 2004, 69, 104303. doi: 10.1103/PhysRevB.69.104303

    10. [10]

      (10) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid-State Lett. 2004, 7, A30.

    11. [11]

      (11) Wang, Y.;Wang, Y.; Hosono, E.;Wang, K.; Zhou, H. Angew. Chem. Int. Edit. 2008, 47, 7461. doi: 10.1002/anie.200802539

    12. [12]

      (12) Arnold, G.; Garche, J.; Hemmer, R.; Strobele, S.; Vogler, C.;Wohlfahrt-Mehrens, A. Journal of Power Sources 2003, 119,247. doi: 10.1016/S0378-7753(03)00241-6

    13. [13]

      (13) Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. Journal of Power Sources 2003, 119, 252. doi: 10.1016/S0378-7753(03)00242-8

    14. [14]

      (14) Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid-State Lett. 2001, 4, A170.

    15. [15]

      (15) Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001,46, 3517. doi: 10.1016/S0013-4686(01)00631-4

    16. [16]

      (16) Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184

    17. [17]

      (17) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1,123. doi: 10.1038/nmat732

    18. [18]

      (18) Ni, J. F.; Zhou, H. H.; Chen, J. T.; Zhang, X. X. Mater. Lett.2005, 59, 2361. doi: 10.1016/j.matlet.2005.02.080

    19. [19]

      (19) Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085. doi: 10.1021/cm050999v

    20. [20]

      (20) Ni, J. F.; Zhou, H. H.; Chen, J. T.; Su, G. Y. Acta Phys. -Chim. Sin. 2004, 20, 582. [倪江锋, 周恒辉, 陈继涛, 苏光耀. 物理化学学报, 2004, 20, 582.] doi: 10.3866/PKU.WHXB20040606

    21. [21]

      (21) Wen, Y. X.; Zheng, M. P.; Tong, Z. F.; Su, H. F.; Xue, M. H.J. Inorg. Mater. 2006, 21, 115. [文衍宣, 郑绵平, 童张法,粟海锋, 薛敏华. 无机材料学报, 2006, 21, 115.]

    22. [22]

      (22) Zhuang, D. G.; Zhao, X. B.; Xie, J.; Tu, J.; Zhu, T. J.; Cao, G. S.Acta Phys. -Chim. Sin. 2006, 22, 840. [庄大高, 赵新兵,些健, 涂健, 朱铁军, 曹高劭. 物理化学学报, 2006, 22,840.] doi: 10.1016/S1872-1508(06)60037-5

    23. [23]

      (23) Wu, S. H.; Chen, M. S.; Chien, C. J.; Fu, Y. P. Journal of Power Sources 2009, 189, 440. doi: 10.1016/j.jpowsour.2009.01.015

    24. [24]

      (24) Lu, J. B.; Tang, Z. L.; Zhang, Z. T.; Jin, Y. Z. Acta Phys. -Chim. Sin. 2005, 21, 319. [卢俊彪, 唐子龙, 张中太, 金永柱. 物理化学学报, 2005, 21, 319.] doi: 10.3866/PKU.WHXB20050319

    25. [25]

      (25) Wang, D. Y.; Li, H.; Shi, S. Q.; Huang, X. J.; Chen, L. Q.Electrochim. Acta 2005, 50, 2955. doi: 10.1016/j.electacta.2004.11.045

    26. [26]

      (26) Ou, X. Q.; Liang, G. C.;Wang, L.; Xu, S. Z.; Zhao, X. Journal of Power Sources 2008, 184, 543. doi: 10.1016/j.jpowsour.2008.02.077

    27. [27]

      (27) Huang, Y. Y.; Zhou, H. H.; Chen, J. T.; Gao, D. S.; Su, G. Y.Acta Phys. -Chim. Sin. 2005, 21, 725. [黄友元, 周恒辉, 陈继涛, 高德淑, 苏光耀. 物理化学学报, 2005, 21, 725.] doi: 10.3866/PKU.WHXB20050706

    28. [28]

      (28) Wang, Z. H.; Yuan, L. X.;Wu, M.; Sun, D.; Huang, Y. H.Electrochim. Acta 2011, 56, 8477. doi: 10.1016/j.electacta.2011.07.018

    29. [29]

      (29) Roberts, M. R.; Vitins, G.; Owen, J. R. Journal of Power Sources 2008, 179, 754. doi: 10.1016/j.jpowsour.2008.01.034

    30. [30]

      (30) Meethong, N.; Kao, Y. H.; Speakman, S. A.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060. doi: 10.1002/adfm.200801617

    31. [31]

      (31) Zhang, P. X.;Wang, Y. Y.; Lin, M. C.; Zhang, D. Y.; Ren, X. Z.;Yuan, Q. H. Journal of the Electrochemical Society 2012, 159,A402.

    32. [32]

      (32) Li, J.; Yuan, C. F.; Guo, Z. H.; Zhang, Z. A.; Lai, Y. Q.; Liu, J. Electrochim. Acta 2012, 59, 69. doi: 10.1016/j.electacta.2011.10.041


  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    3. [3]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(1215)
  • Abstract views(2481)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return