Citation: WANG Xian-Zhong, KANG Wan-Li, MENG Xiang-Can, FAN Hai-Ming, XU Hai, HUANG Jing-Wei, FU Jian-Bin, ZHANG Yi-Nuo. Ultra-Low Interfacial Tension in High Salinity Reservoir Driven by Synergistic Interaction of Zwitterionic and Anionic Surfactants[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2285-2290. doi: 10.3866/PKU.WHXB201206291 shu

Ultra-Low Interfacial Tension in High Salinity Reservoir Driven by Synergistic Interaction of Zwitterionic and Anionic Surfactants

  • Received Date: 7 May 2012
    Available Online: 29 June 2012

    Fund Project: 建设工程(ts20070704) (ts20070704) 国家自然科学基金(51104169) (51104169) 山东省自然科学基金(ZR2010BQ003, ZR2010EZ006)与中央高校基本科研业务费专项资金(11CX06028A)资助项目 (ZR2010BQ003, ZR2010EZ006)与中央高校基本科研业务费专项资金(11CX06028A)

  • The present work investigates the use of synergistic interactions between zwitterionic and anionic surfactants to obtain ultra-low interfacial tension (IFT) in a high salinity reservoir. Zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate was found to be compatible with simulated high salinity water, reducing crude oil/water interfacial tension to a magnitude of 10-2 mN·m-1 in a surfactant concentration range of 0.07%-0.39% (mass fraction), whereas ultra-low IFT was obtained by adding anionic surfactant sodium dodecyl sulfate. Furthermore, the effects of total surfactant concentration, metal ion concentration, and molar ratio on the dynamic interfacial tension of zwitterionic/anionic surfactant mixtures were studied. Results showed that 10-5 mN·m-1 magnitude ultra-low IFT was obtained over a wide range of surfactant concentrations from as low as 0.04% and up to 0.37% in high salinity water. The synergistic mechanism of ultra-low IFT formed in zwitterionic/anionic surfactant systems was further analyzed.

  • 加载中
    1. [1]

      (1) Song,W. D.; Fang, T.;Wang, Q. K.; Zhou, Y. B. Energy Technology and Economics 2010, 22, 18. [宋卫东, 方彤,王乾坤, 周原冰. 能源技术经济, 2010, 22, 18.]

    2. [2]

      (2) Zhao, F. L. Principles of Enhanced Oil Recovery; ChinaUniversity of Petroleum Press: Dongying, 2006; pp 1-2.[赵福麟. EOR 原理. 东营: 石油大学出版社, 2006: 1-2.]

    3. [3]

      (3) Krumrine, P. H.; Falcone, J. S., Jr. Surfactant, Polymer, and Alkali Interactions in Chemical Flooding Processes, paper SPE11778 presented at the International Symposium on Oilfield andGeothermal Chemistry, Denver, Texas, June 1-3, 1983.

    4. [4]

      (4) Delshad, M.; Han,W.; Pope, G. A.; Sepehrnoori, K.;Wu,W.;Yang, R.; Zhao, L. Alkaline/Surfactant/Polymer Flood Predictions for the Karamay Oil Field, paper SPE 39610presented at the SPE/DOE Symposium on Improved OilRecovery, Tulsa, Oklahoma, April 19-22, 1998.

    5. [5]

      (5) Qu, Z. J.; Zhang, Y. G.; Zhang, X. S.; Dai, J. L. A Successful ASP Flooding Pilot in Gudong Oil Field, paper SPE 39613presented at the SPE/DOE Symposium on Improved OilRecovery, Tulsa, Oklahoma, April 19-22, 1998.

    6. [6]

      (6) Wang, D. M.; Cheng, J. C.;Wu, J. Z.; Yang, Z. Y.; Yao, Y. M.;Li, H. F. Summary of ASP Pilots in Daqing Oil Field, paper SPE57288 presented at the SPE Asia Pacific Improved Oil RecoveryConference, Kuala Lumpur, Malaysia, October 25-26, 1999.

    7. [7]

      (7) Green, D.W.;Willhite, G. P. Enhanced Oil Recovery; Henry, L.Ed., Doherty Memorial Fund of AIME, Society of PetroleumEngineers: Richardson, 1998; pp 12-35.

    8. [8]

      (8) Kang,W. L.; Liu, Y. J. China Surfactant Detergent & Cosmetics2000, 4, 30. [康万利, 刘永建. 日用化学工业, 2000, 4, 30.]

    9. [9]

      (9) Zhang, L.; Luo, L.; Zhao, S.; Xu, Z. C.; An, J. Y.; Yu, J. Y.J. Petro. Sci. Eng. 2004, 41, 189. doi: 10.1016/S0920-4105(03)00153-0

    10. [10]

      (10) Chu, Y. P.; ng, Y.; Tan, X. L.; Zhang, L.; Zhao, S.; An, J. Y.;Yu, J. Y. J. Colloid Interface Sci. 2004, 276, 182. doi: 10.1016/j.jcis.2004.03.007

    11. [11]

      (11) Zhang, S.; Xu, Y.; Qiao,W.; Li, Z. Fuel 2004, 83, 2059. doi: 10.1016/j.fuel.2004.04.001

    12. [12]

      (12) Guo, D. H.; Xin, H. C.; Cui, X. D.; Xie, H. Z. Petroleum Processing and Petrochemicals 2005, 12, 41. [郭东红, 辛浩川, 崔晓东, 谢慧专. 石油炼制与化工, 2005, 12, 41.]

    13. [13]

      (13) Zhao, Z. K.; Li, Z. S.; Zhao, S.; Qiao,W. H.; Cheng, L. B.Colloid Surf. A: Physicochem. Eng. Asp. 2005, 259, 71. doi: 10.1016/j.colsurfa.2005.02.012

    14. [14]

      (14) ng, H. J.; Xia, X.; Xu, G.;Wang, Y. J. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 317, 522. doi: 10.1016/j.colsurfa.2007.11.034

    15. [15]

      (15) Han, X.; Cheng, X. H.;Wang, J.; Huang, J. B. Acta Phys. -Chim. Sin. 2012, 28, 146. [韩霞, 程新皓, 王江, 黄建滨. 物理化学学报, 2012, 28, 146.] doi: 10.3866/PKU.WHXB201228146

    16. [16]

      (16) Hou, J. R.; Liu, Z. C.; Yue, X. A. Petroleum Geology & Oilfield Development in Daqing 2006, 25, 82. [侯吉瑞, 刘中春, 岳湘安. 大庆石油地质与开发, 2006, 25, 82.]

    17. [17]

      (17) Yuan, X. Q.; Li, B. G.; Zhao, J. Y. Oilfield Chemistry 2008, 25,170. [袁新强, 李佰广, 赵劲毅. 油田化学, 2008, 25, 170.]

    18. [18]

      (18) Sheng, D. Q. Well Testing and Production Technology 1995, 16,60. [绳德强. 试采技术, 1995, 16, 60.]

    19. [19]

      (19) Chen, S. Y.; Liu, A. F.; Sun, X. N.; Liu, M. T.; Lin, T. Petroleum Geology & Oilfield Development in Daqing 2006, 25, 97. [陈仕宇, 刘安芳, 孙雪娜, 刘明涛, 林涛. 大庆石油地质与开发,2006, 25, 97.]

    20. [20]

      (20) Zaitoun, A.; Fonseca, C.; Berger, P.; Baizin, B.; Monin, N. New Surfactant for Chemical Flood in High-Salinity Reservoir, paperSPE 80237 presented at the SPE International Symposium onOilfield Chemistry, Houston, Texas, February 5-7, 2003.

    21. [21]

      (21) Chen, H.; Han, L.; Luo, P.; Ye, Z. Journal of Colloid and Interface Science 2005, 285, 872. doi: 10.1016/j.jcis.2004.11.066

    22. [22]

      (22) Chen, H.; Han, L.; Luo, P.; Ye, Z. Surface Science 2005, 552,L53.

    23. [23]

      (23) Wu,W. X.; Zhang,W.; Liu, C. D. Oilfield Chemistry 2007, 24,60. [吴文祥, 张武, 刘春德. 油田化学, 2007, 24, 60.]

    24. [24]

      (24) Wang, D. M.; Liu, C. D.;Wu,W. X. Development of an Ultra-Low Interfacial Tension Surfactant in a System with No-alkali for Chemical Flooding, paper SPE 109017 presentedat the SPE/DOE Improved Oil Recovery, Tulsa, Oklahoma,April 19-23, 2008.

    25. [25]

      (25) Wu,W. X.; Yin, Q. G.; Liu, C. D. Petroleum Geology and Recovery Efficiency 2009, 16, 67. [吴文祥, 殷庆国, 刘春德.油气地质与采收率, 2009, 16, 67.]

    26. [26]

      (26) Zhao, G. X.; Zhu, B. Y. Principles of Surfactant Action; Chinalight Industry Press: Beijing, 2003; pp 356-382. [赵国玺, 朱瑶. 表面活性剂作用原理. 北京: 中国轻工业出版社, 2003:356-382.]

    27. [27]

      (27) Rubin, E.; Radke, C. J. Chemical Engineering Science 1980, 5,1129.


  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    4. [4]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    10. [10]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    11. [11]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(794)
  • Abstract views(2234)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return