Citation: LI Qiang, ZHAO Hui, JIANG Rui, GUO Li-Fan. Synthesis and Electrochemical Properties of La1.6Sr0.4Ni1-xCuxO4 as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206272
-
Cathodic materials La1.6Sr0.4Ni1-xCuxO4 (x=0.2, 0.4, 0.6, 0.8), for an intermediate temperature solid oxide fuel cell (IT-SOFC), were prepared by a glycine-nitrate process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Results showed that no reaction occurred between the La1.6Sr0.4Ni1-xCuxO4 electrode and the Ce0.9Gd0.1O1.95 (C ) electrolyte at 1000 °C, and that the electrode formed od contact with the electrolyte after sintering at 1000 °C for 4 h. Electrochemical AC impedance spectroscopy measurements were used to study cathodic performance. The La1.6Sr0.4Ni0.4Cu0.6O4 cathode gave the lowest polarization resistance (Rp) of 0.35 Ω·cm2 at 750 ° C in air. Electrode properties of La1.6Sr0.4Ni1-xCuxO4 were studied under various temperatures and oxygen partial pressures. The two main oxygen reduction processes at the cathode are the oxygen ion transfer from the triple phase boundary to C electrolyte, and the charge transfer process. Charge transfer is the major rate limiting step for La1.6Sr0.4Ni1-xCuxO4 cathode. The La1.6Sr0.4Ni0.4Cu0.6O4 cathode exhibited the lowest overpotential, about 45 mV for a current density of 45 mA·cm-2 at 700 °C in air. This preliminary work showed that the present La1.6Sr0.4Ni1-xCuxO4 materials may be potential cathodes for use in IT-SOFCs.
-
-
[1]
(1) Skinner, S. J.; Kilner, J. A. Solid State Ionics 2000, 135, 709.doi: 10.1016/S0167-2738(00)00388-X
-
[2]
(2) Ding, X. F.; Kong, X.; Jiang, J. G.; Cui, C. Int. J. Hydrog. Energy 2009, 34, 6869. doi: 10.1016/j.ijhydene.2009.06.041
-
[3]
(3) Peng, B.; Chen, G.;Wang, T.; Zhou, J.; Guo, J. J.; Cheng, Y. H.;Wu, K. J. Power Sources 2012, 201, 174.
-
[4]
(4) Taguchi, H. Mater. Res. Bull. 2001, 36, 1361. doi: 10.1016/S0025-5408(01)00631-6
-
[5]
(5) Vashook, V.; Girdauskaite, E.; Zosel, J.;Wen, T. L.; Ullmann,H.; Guth, U. Solid State Ionics 2006, 177, 1163. doi: 10.1016/j.ssi. 2006.05.018
-
[6]
(6) Minervini, L.; Grimes, R.W.; Kilner, J. A.; Sickafus, K. E.J. Mater. Chem. 2000, 10, 2349. doi: 10.1039/b004212i
-
[7]
(7) Yang, X. M.; Luo, L. T.; Zhong, H. Appl. Catal. A 2001, 207,69. doi: 10.1016/S0926-860X(00)00658-X
-
[8]
(8) Bochkov, D. M.; Kharton, V. V.; Kovalevsky, A. V.; Viskup, A.P.; Naumovich, E. N. Solid State Ionics 1999, 120, 281. doi: 10.1016/S0167-2738(99)00019-3
-
[9]
(9) Vashooka, V. V.; Trofimenko, N. E.; Ullmann, H.; Makhnach, L.V. Solid State Ionics 2000, 131, 329. doi: 10.1016/S0167-2738(00)00571-3
-
[10]
(10) Yang, J. F.; Cheng, J. G.; Fan, Y. M.;Wang, R.; Gao, J. F. Acta Phys. -Chim. Sin. 2012, 28, 1230. [杨俊芳, 程继贵, 樊玉萌,王睿, 高建峰. 物理化学学报, 2012, 28, 1230.] doi: 10.3866/PKU.WHXB201202232
-
[11]
(11) Khandale, A. P.; Bhoga, S. S. J. Power Sources 2010, 195, 7974.doi: 10.1016/j.jpowsour.2010.06.044
-
[12]
(12) Al Daroukh, M.; Vashook, V. V.; Ullmann, H.; Tietz, F.; ArualRaj, I. Solid State Ionics 2003, 158, 141. doi: 10.1016/S0167-2738(02)00773-7
-
[13]
(13) Jorgensen, J.; Dabrowski, B.; Pei, S.; Richards, D. R.; Hinks, D.G. Phys. Rev. B 1989, 40, 2187. doi: 10.1103/PhysRevB.40.2187
-
[14]
(14) Li, Q.; Fan, Y.; Zhao, H.; Huo, L. H. Chin. J. Inorg. Chem.2006, 22, 2025. [李强, 范勇, 赵辉, 霍丽华. 无机化学学报, 2006, 22, 2025.]
-
[15]
(15) Inprasit, T.; Limthongkul, P.;Wongkasemjit, S. ECS Transactions 2009, 25, 2581.
-
[16]
(16) Ling, Y. H.; Zhao, L.; Lin, B.; Dong, Y. C.; Zhang, X. Z.; Meng,G. Y.; Liu, X. Q. Int. J. Hydrog. Energy 2010, 35, 6905. doi: 10.1016/j.ijhydene.2010.04.021
-
[17]
(17) Zhang, H.;Wang, T.; Dong, X.; Lin,W. J. Nat. Gas Chem.2009, 18, 45. doi: 10.1016/S1003-9953(08)60084-5
-
[18]
(18) Zha, S.W.; Moore, A.; Abernathy, H.; Liu, M. L.J. Electrochem. Soc. 2004, 151, A1128.
-
[19]
(19) Zhao, H.; Li, Q.; Sun, L. P. Sci. China Ser. B-Chem. 2011, 54,898. doi: 10.1007/s11426-011-4290-2
-
[20]
(20) Aguadero, A.; Alonso, J. A.; Escudero, M. J.; Daza, L. Solid State Ionics 2008, 151, 393.
-
[21]
(21) Li, Q.; Zhao, H.; Huo, L. H.; Sun, L. P.; Cheng, X. L.; Grenier,J. C. Electrochem. Commun. 2007, 9, 1508. doi: 10.1016/j.elecom.2007.02.013
-
[22]
(22) Li, Q.; Fan, Y.; Zhao, H.; Sun, L. P.; Huo, L. H. J. Power Sources 2007, 167, 64. doi: 10.1016/j.jpowsour.2007.02.018
-
[23]
(23) Efimov, K.; Halfer, T.; Kuhn, A.; Heitjans, P.; Caro, J.; Feldhoff,A. Chem. Mater. 2010, 22, 1540. doi: 10.1021/cm902882s
-
[24]
(24) Irvine, J. T. S.; Sinclair, D. C.;West, A. R. Adv. Mater. 1990, 2,132. doi: 10.1002/adma.19900020304
-
[25]
(25) Takeda, Y.; Kanno, R.; Noda, M.; Yamamoto, O.J. Electrochem. Soc. 1987, 134, A2656.
-
[26]
(26) Sicbeit, E.; Hammouche, A.; Kleitz, M. Electrochim. Acta 1995,40, 1741. doi: 10.1016/0013-4686(94)00361-4
-
[27]
(27) Li, Q.; Zeng, X.; Sun, L. P.; Zhao, H.; Huo, L. H.; Grenier, J. C.Int. J. Hydrog. Energy 2012, 37, 2552. doi: 10.1016/j.ijhydene.2011.11.014
-
[28]
(28) Mauvy, F.; Lalanne, C.; Bassat, J. M.; Grenier, J. C.; Zhao, H.;Dordor, P.; Stevens, P. J. Eur. Ceram. Soc. 2005, 25, 2669.doi: 10.1016/j.jeurceramsoc.2005.03.120
-
[1]
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230488
-
[2]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230253
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030
-
[4]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407005
-
[5]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230402
-
[6]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, doi: 10.3866/PKU.DXHX202309050
-
[7]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230447
-
[8]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240022
-
[9]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240115
-
[10]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, doi: 10.3866/PKU.DXHX202312081
-
[11]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230252
-
[12]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240170
-
[13]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202312056
-
[14]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230369
-
[15]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230459
-
[16]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230480
-
[17]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230478
-
[18]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, doi: 10.3866/PKU.DXHX202401009
-
[19]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309005
-
[20]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, doi: 10.3866/PKU.DXHX202312042
-
[1]
Metrics
- PDF Downloads(889)
- Abstract views(1918)
- HTML views(7)