Citation: GUO Zheng, HU Xin-Gen, LIANG Hong-Yu, JIA Zhao-Peng, CHENG Wei-Na, LIU Jia-Min. Enthalpic Pairwise Interactions of α-Aminobutyric Acid Enantiomers in DMF+Water Mixtures[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206261 shu

Enthalpic Pairwise Interactions of α-Aminobutyric Acid Enantiomers in DMF+Water Mixtures

  • Received Date: 17 March 2012
    Available Online: 26 June 2012

    Fund Project: 国家自然科学基金(21073132)资助项目 (21073132)

  • Dilution enthalpies of two α-aminobutyric acid enantiomers, L-α-aminobutyric acid and D-α-aminobutyric acid, in dimethylformide (DMF)+water mixtures of various compositions are determined by isothermal titration microcalorimetry (ITC) at 298.15 K. Homotactic enthalpic pairwise interaction coefficients for each solvent composition are calculated according to the McMillan-Mayer theory of statistical thermodynamics. From the point of view of solute-solute and solute-solvent interactions, competition equilibria among hydrophobic-hydrophobic, hydrophobic-hydrophilic, and hydrophilichydrophilic interactions in ternary solutions are explored. It is found that all values of hxx are positive across the entire studied composition range of mixed solvents (mass fraction of DMF, wDMF=0-0.3), gradually reducing with the increasing wDMF. It is of interest that the hxx values for the L-enantiomer are universally larger than those of the D-enantiomer (hLL>hDD), which indicates that ITC is useful to discriminate homochiral enthalpic pairwise interaction of enantiomers. Our results show that hydrophobic-hydrophobic and hydrophobic-hydrophilic interactions are predominant in pairwise molecular interaction processes in ternary solutions containing α-aminobutyric acid, water, and DMF, and that the configuration of L-L molecular pair is more advantageous for the approach of hydrophobic side-chains (CH3CH2-) on α-carbon than a D-D pair, where part of the structured water molecules relax to less structured bulky water due to the overlap and partial breaking of hydrophobic hydration cospheres around nonpolar groups. This confirms that the process is spontaneous and is accompanied with positive enthalpy change and obvious increase in entropy (ΔG<0, ΔH>0, and ΔS=(ΔHG)/T>0), consequently releasing more heat upon dilution of the solutions and leading to larger values of hxx.

  • 加载中
    1. [1]

      (1) McMillan,W. G.; Mayer, J. E. J. Chem. Phys. 1945, 13, 276.doi: 10.1063/1.1724036

    2. [2]

      (2) Kozak, J. J.; Knight,W. S.; Kauzmann,W. J. Chem. Phys. 1968,48, 675. doi: 10.1063/1.1668700

    3. [3]

      (3) Piekarski, H. Pure Appl. Chem. 1999, 71 (7), 1275. doi: 10.1351/pac199971071275

    4. [4]

      (4) Castronuovo, G.; Elia, V.; Perez-Casas, S.; Velleca, F. J. Mol. Liq. 2000, 88 (2), 163. doi: 10.1016/S0167-7322(00)00151-3

    5. [5]

      (5) Zhu, Y.; Yu, L.; Pang, X. J. Chem. Eng. Data 2009, 54 (6),1910. doi: 10.1021/je900086b

    6. [6]

      (6) Palecz, B.; Dunal, J.;Waliszewski, D. J. Chem. Eng. Data 2010,55 (11), 5216. doi: 10.1021/je100756z

    7. [7]

      (7) Alston, J. R.; Overson, D.; Poler, J. C. Langmuir 2012, 28 (1),264. doi: 10.1021/la203765j

    8. [8]

      (8) Castronuovo, G.; Elia, V.; Moniello, V.; Velleca, F.; Perez-Casas, S. Phys. Chem. Chem. Phys. 1999, 1 (8), 1887.

    9. [9]

      (9) Palecz, B. J. Am. Chem. Soc. 2002, 124 (21), 6003. doi: 10.1021/ja011937i

    10. [10]

      (10) Palecz, B. J. Am. Chem. Soc. 2005, 127 (50), 17768.doi: 10.1021/ja054407l

    11. [11]

      (11) Zhang, H.; Hu, X.; Shao, S. J. Chem. Eng. Data 2010, 55 (2),941. doi: 10.1021/je9005322

    12. [12]

      (12) Guo, A.; Hu, X.; Fang, G.; Shao, S.; Zhang, H. J. Chem. Eng. Data 2011, 56 (5), 2489. doi: 10.1021/je101353r

    13. [13]

      (13) Guo, Z.; Hu, X.; Fang, G.; Shao, S.; Guo, A.; Liang, H.Thermochim Acta 2012, 534, 51. doi: 10.1016/j.tca.2012.02.004

    14. [14]

      (14) Fini, P.; Castagnolo, M. J. Therm. Anal. Calorim. 2001, 66 (1),91. doi: 10.1023/A:1012435631222

    15. [15]

      (15) Borghesani, G.; Pulidori, F. Can. J. Chem. 1984, 62, 2898. doi: 10.1139/v84-490

    16. [16]

      (16) Thompson, P. T.; Davis, C. B.;Wood, R. H. J. Phys. Chem.1988, 92 (22), 6386. doi: 10.1021/j100333a041

    17. [17]

      (17) Gaffney, S. H.; Haslam, E.; Lilley, T. H. Thermochim. Acta1985, 86, 175. doi: 10.1016/0040-6031(85)87046-5

    18. [18]

      (18) Piekarski, H. J. Chem. Soc. Faraday Trans. I 1988, 84, 591.doi: 10.1039/f19888400591

    19. [19]

      (19) Bloemendal, M.; Sijpkes, A. H.; Somsen, G. J. Solut. Chem.1986, 11 (1), 81.

    20. [20]

      (20) Bloemendal, M.; Somsen, G. J. Am. Chem. Soc. 1985, 107 (12),3426. doi: 10.1021/ja00298a005

    21. [21]

      (21) Lei, Y.; Li, H.; Pan, H.; Han, S. J. Phys. Chem. A 2003, 107,1574.

    22. [22]

      (22) Xu, Z.; Li, H.;Wang, C.; Pan, H.; Han, S. J. Chem. Phys. 2006,124, 244502. doi: 10.1063/1.2206177

    23. [23]

      (23) Park, S. K.; Min, K. C.; Lee, C.; Hong, S. K.; Kim, Y.; Lee, N.S. Bull. Korean Chem. Soc. 2009, 30 (11), 2595. doi: 10.5012/bkcs.2009.30.11.2595

    24. [24]

      (24) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc.1994, 116 (3), 909. doi: 10.1021/ja00082a011

    25. [25]

      (25) Gallardo, M. A.; Lilley, T. H.; Linsdell, H.; Otin, S. Thermochim. Acta 1993, 223, 41. doi: 10.1016/0040-6031(93)80118-T

    26. [26]

      (26) Lin, R.; Hu, X.; Ren, X. Thermochim. Acta 2000, 352-353, 31.

    27. [27]

      (27) Lu, Y.; Xie,W.; Lu, J. Thermochim. Acta 2002, 385, 1.doi: 10.1016/S0040-6031(01)00700-6

    28. [28]

      (28) Barone, G.; Castronuovo, G.; Vecchio, P.; Elia, V.; Puzziello, S.J. Solut. Chem. 1989, 18 (12), 1105. doi: 10.1007/BF00647267

    29. [29]

      (29) Castronuovo, G.; Elia, V.; Velleca, F. J. Solut. Chem. 1995, 24 (12), 1209. doi: 10.1007/BF00972829

    30. [30]

      (30) Andini, S.; Castronuovo, G.; Elia, V.; Velleca, F. J. Solut. Chem. 1995, 24 (5), 485.

    31. [31]

      (31) Andini, S.; Castronuovo, G.; Elia, V.; Pignone, A.; Velleca, F.J. Solut. Chem. 1996, 25 (9), 837.

    32. [32]

      (32) Smirnov, V. I.; Badelin, V. G. J. Solut. Chem. 2008, 37 (10),1419. doi: 10.1007/s10953-008-9313-z


  • 加载中
    1. [1]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, doi: 10.3866/PKU.DXHX202311034

    2. [2]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, doi: 10.3866/PKU.DXHX202402052

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, doi: 10.3866/PKU.DXHX202309004

    8. [8]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, doi: 10.12461/PKU.DXHX202310091

    9. [9]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, doi: 10.3866/PKU.DXHX202311011

    10. [10]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, doi: 10.12461/PKU.DXHX202403012

    11. [11]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202308042

    12. [12]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, doi: 10.12461/PKU.DXHX202402039

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230431

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230374

    15. [15]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, doi: 10.3866/PKU.DXHX202401086

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230385

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230282

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, doi: 10.3866/PKU.DXHX202312064

    20. [20]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, doi: 10.3866/PKU.DXHX202310125

Metrics
  • PDF Downloads(871)
  • Abstract views(1965)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return