Citation:
LIU Ling-Tao, ZHANG Bin, LI Jing, MA Ding, KOU Yuan. Selective Degradation of Organosolv Lignin over Noble Metal Catalyst in a Two-Step Process[J]. Acta Physico-Chimica Sinica,
;2012, 28(10): 2343-2348.
doi:
10.3866/PKU.WHXB201206152
-
Dioxane lignin, a typical organosolv lignin, was degraded by supported noble metal catalysts and phosphoric acid by a two-step method at different temperatures. The results showed that under 4 MPa H2 at 270 ℃ using Rh/C and 1% (w) phosphoric acid as catalysts, the highest total yield of the monomers and dimer was 16.9% after the first step, based on gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) analyses. Moreover, the raw products from the first step were analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), element analysis (EA), and gel permeation chromatography (GPC) to improve the understanding of the chemical transformations involved. The results indicated that the C-O-C bond linkages in the dioxane lignin were cleaved to form lower molecular-weight products, resulting in the degradation of lignin, and the carbonyl and carboxyl groups were partly removed. Oxygen content was reduced dramatically with increasing reaction temperature, from 35% (w) to 21% (w) after reacting at 270 ℃ for 10 h. Based on the analysis results, a reaction pathway for the degradation of lignin was proposed. Finally, the products from the first step could be hydrodeoxygenated to alkanes with carbon numbers in the range of gasoline and diesel with high selectivity catalyzed by Pd/C and phosphoric acid at 250 ℃.
-
Keywords:
-
Dioxane lignin
, - Degradation,
- Hydrogenolysis,
- Hydrodeoxygenation,
- Liquid fuel
-
-
-
-
[1]
(1) Huber, G.W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.doi: 10.1021/cr068360d
-
[2]
(2) Huber, G.W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A.Science 2005, 308, 1446.
-
[3]
(3) Rinaldi, R.; Palkovits, R.; Schueth, F. Angew. Chem. Int. Edit.2008, 47, 8047. doi: 10.1002/anie.200802879
-
[4]
(4) Deng, L.; Li, J.; Lai, D. M.; Fu, Y.; Guo, Q. X. Angew. Chem. Int. Edit. 2009, 48, 6529. doi: 10.1002/anie.200902281
-
[5]
(5) Bond, J. Q.; Alonso, D. M.;Wang, D.;West, R. M.; Dumesic, J.A. Science 2010, 327, 1110. doi: 10.1126/science.1184362
-
[6]
(6) Bozell, J. J. Science 2010, 329, 522. doi: 10.1126/science.1191662
-
[7]
(7) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt,W.;Klankermayer, J.; Leitner,W. Angew. Chem. Int. Edit. 2010, 49,5510. doi: 10.1002/anie.201002060
-
[8]
(8) Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Angew. Chem. Int. Edit. 2011, 50, 2375.
-
[9]
(9) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan,K. N. Angew. Chem. Int. Edit. 2011, 50, 7815. doi: 10.1002/anie.201100102
-
[10]
(10) Rackemann, D.W.; Doherty,W. O. S. Biofuel. Bioprod. Bior.2011, 5, 198. doi: 10.1002/bbb.267
-
[11]
(11) Fukuoka, A.; Dhepe, P. L. Angew. Chem. Int. Edit. 2006, 45,5161. doi: 10.1002/anie.200601921
-
[12]
(12) Luo, C.;Wang, S.; Liu, H. Angew. Chem. Int. Edit. 2007, 46,7636. doi: 10.1002/anie.200702661
-
[13]
(13) Ji, N.; Zhang, T.; Zheng, M.;Wang, A.;Wang, H.;Wang, X.;Chen, J. G. Angew. Chem. Int. Edit. 2008, 47, 8510. doi: 10.1002/anie.200803233
-
[14]
(14) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science2007, 316, 1597. doi: 10.1126/science.1141199
-
[15]
(15) Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979.doi: 10.1021/ja808537j
-
[16]
(16) Zhang, Z.; Zhao, Z. K. Bioresource Technol. 2010, 101, 1111.doi: 10.1016/j.biortech.2009.09.010
-
[17]
(17) Mascal, M.; Nikitin, E. B. Angew. Chem. Int. Edit. 2008, 47,7924. doi: 10.1002/anie.200801594
-
[18]
(18) Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Green Chem.2009, 11, 1746. doi: 10.1039/b914601f
-
[19]
(19) Yan, N.; Zhao, C.; Gan,W. J.; Kou, Y. Chin. J. Catal. 2006, 27,1159. [颜宁, 赵晨, 甘维佳, 寇元. 催化学报, 2006, 27,1159.]
-
[20]
(20) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am. Chem. Soc. 2006, 128, 8714. doi: 10.1021/ja062468t
-
[21]
(21) Pepper, J. M.; Rahman, M. D. Cell. Chem. Technol. 1987, 21,233.
-
[22]
(22) Thring, R.W.; Katikaneni, S. P. R.; Bakhshi, N. N. Fuel Process. Technol. 2000, 62, 17. doi: 10.1016/S0378-3820(99)00061-2
-
[23]
(23) Jackson, M. A.; Compton, D. L.; Boateng, A. A. J. Anal. Appl. Pyrol. 2009, 85, 226. doi: 10.1016/j.jaap.2008.09.016
-
[24]
(24) Stark, K.; Taccardi, N.; Bosmann, A.;Wasserscheid, P.ChemSusChem 2010, 3, 719. doi: 10.1002/cssc.200900242
-
[25]
(25) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.;Weckhuysen,B. M. Chem. Rev. 2010, 110, 3552. doi: 10.1021/cr900354u
-
[26]
(26) Yan, N.; Zhao, C.; Dyson, P. J.;Wang, C.; Liu, L. T.; Kou, Y.ChemSusChem 2008, 1, 626. doi: 10.1002/cssc.200800080
-
[27]
(27) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Angew. Chem. Int. Edit. 2009, 48, 3987. doi: 10.1002/anie.200900404
-
[28]
(28) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Chem. Commun. 2010, 46, 412.
-
[29]
(29) Zhao, C.; He, J.; Lemonidou, A. A.; Li, X.; Lercher, J. A.J. Catal. 2011, 280, 8. doi: 10.1016/j.jcat.2011.02.001
-
[30]
(30) Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem. Int. Edit. 2010, 49, 5549. doi: 10.1002/anie.201001531
-
[31]
(31) Pepper, J. M.; Siddiqueullah, M. Can. J. Chem. 1961, 39, 1454.doi: 10.1139/v61-185
-
[32]
(32) Derkacheva, O.; Sukhov, D. Macromol. Symp. 2008, 265, 61.doi: 10.1002/masy.200850507
-
[33]
(33) He, J. X.; Zhang,W.; Li, K. J.; Cui, S. Z.;Wang, S. Y. J. Text. Res. 2009, 30, 13. [何建新, 章伟, 李克兢, 崔世忠, 王善元.纺织学报, 2009, 30, 13.]
-
[34]
(34) Jung, H. J. G.; Himmelsbach, D. S. J. Agric. Food Chem. 1989,81.
-
[35]
(35) Zhang, A. P.; Liu, C. F.; Sun, R. C. Ind. Crop. Prod. 2010, 31,357. doi: 10.1016/j.indcrop.2009.12.003
-
[36]
(36) Faix, O. Holzforschung 1991, 45 (Suppl.), 21.
-
[37]
(37) Dorris, G. M.; Gray, D. G. Cell. Chem. Technol. 1978, 12, 9.
-
[1]
-
-
-
[1]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[2]
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
-
[3]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[4]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[5]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050
-
[6]
Rui LIU , Xinjun ZHOU , Tao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033
-
[7]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[8]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[9]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[10]
Shumin Zhang , Yaqi Wang , Zelin Wang , Libo Wang , Changsheng An , Difa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136
-
[11]
Shiyi Chen , Jialong Fu , Jianping Qiu , Guoju Chang , Shiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-. doi: 10.1016/j.actphy.2025.100135
-
[12]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[13]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[14]
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
-
[15]
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
-
[16]
Rohit Kumar , Anita Sudhaik , Aftab Asalam Pawaz Khan , Van Huy Neguyen , Archana Singh , Pardeep Singh , Sourbh Thakur , Pankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150
-
[17]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[18]
Lijun Zhou , Dongmei Wang , Jiameng Wang , Tongjie Yao , Mei Qi , Yin Kong , Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113
-
[19]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[20]
Minglei Sun , Zhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108
-
[1]
Metrics
- PDF Downloads(810)
- Abstract views(2511)
- HTML views(50)
Login In
DownLoad: