Citation: LIU Ling-Tao, ZHANG Bin, LI Jing, MA Ding, KOU Yuan. Selective Degradation of Organosolv Lignin over Noble Metal Catalyst in a Two-Step Process[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2343-2348. doi: 10.3866/PKU.WHXB201206152
-
Dioxane lignin, a typical organosolv lignin, was degraded by supported noble metal catalysts and phosphoric acid by a two-step method at different temperatures. The results showed that under 4 MPa H2 at 270 ℃ using Rh/C and 1% (w) phosphoric acid as catalysts, the highest total yield of the monomers and dimer was 16.9% after the first step, based on gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) analyses. Moreover, the raw products from the first step were analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), element analysis (EA), and gel permeation chromatography (GPC) to improve the understanding of the chemical transformations involved. The results indicated that the C-O-C bond linkages in the dioxane lignin were cleaved to form lower molecular-weight products, resulting in the degradation of lignin, and the carbonyl and carboxyl groups were partly removed. Oxygen content was reduced dramatically with increasing reaction temperature, from 35% (w) to 21% (w) after reacting at 270 ℃ for 10 h. Based on the analysis results, a reaction pathway for the degradation of lignin was proposed. Finally, the products from the first step could be hydrodeoxygenated to alkanes with carbon numbers in the range of gasoline and diesel with high selectivity catalyzed by Pd/C and phosphoric acid at 250 ℃.
-
Keywords:
-
Dioxane lignin
, - Degradation,
- Hydrogenolysis,
- Hydrodeoxygenation,
- Liquid fuel
-
-
-
[1]
(1) Huber, G.W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.doi: 10.1021/cr068360d
-
[2]
(2) Huber, G.W.; Chheda, J. N.; Barrett, C. J.; Dumesic, J. A.Science 2005, 308, 1446.
-
[3]
(3) Rinaldi, R.; Palkovits, R.; Schueth, F. Angew. Chem. Int. Edit.2008, 47, 8047. doi: 10.1002/anie.200802879
-
[4]
(4) Deng, L.; Li, J.; Lai, D. M.; Fu, Y.; Guo, Q. X. Angew. Chem. Int. Edit. 2009, 48, 6529. doi: 10.1002/anie.200902281
-
[5]
(5) Bond, J. Q.; Alonso, D. M.;Wang, D.;West, R. M.; Dumesic, J.A. Science 2010, 327, 1110. doi: 10.1126/science.1184362
-
[6]
(6) Bozell, J. J. Science 2010, 329, 522. doi: 10.1126/science.1191662
-
[7]
(7) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt,W.;Klankermayer, J.; Leitner,W. Angew. Chem. Int. Edit. 2010, 49,5510. doi: 10.1002/anie.201002060
-
[8]
(8) Corma, A.; de la Torre, O.; Renz, M.; Villandier, N. Angew. Chem. Int. Edit. 2011, 50, 2375.
-
[9]
(9) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan,K. N. Angew. Chem. Int. Edit. 2011, 50, 7815. doi: 10.1002/anie.201100102
-
[10]
(10) Rackemann, D.W.; Doherty,W. O. S. Biofuel. Bioprod. Bior.2011, 5, 198. doi: 10.1002/bbb.267
-
[11]
(11) Fukuoka, A.; Dhepe, P. L. Angew. Chem. Int. Edit. 2006, 45,5161. doi: 10.1002/anie.200601921
-
[12]
(12) Luo, C.;Wang, S.; Liu, H. Angew. Chem. Int. Edit. 2007, 46,7636. doi: 10.1002/anie.200702661
-
[13]
(13) Ji, N.; Zhang, T.; Zheng, M.;Wang, A.;Wang, H.;Wang, X.;Chen, J. G. Angew. Chem. Int. Edit. 2008, 47, 8510. doi: 10.1002/anie.200803233
-
[14]
(14) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science2007, 316, 1597. doi: 10.1126/science.1141199
-
[15]
(15) Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979.doi: 10.1021/ja808537j
-
[16]
(16) Zhang, Z.; Zhao, Z. K. Bioresource Technol. 2010, 101, 1111.doi: 10.1016/j.biortech.2009.09.010
-
[17]
(17) Mascal, M.; Nikitin, E. B. Angew. Chem. Int. Edit. 2008, 47,7924. doi: 10.1002/anie.200801594
-
[18]
(18) Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B. Green Chem.2009, 11, 1746. doi: 10.1039/b914601f
-
[19]
(19) Yan, N.; Zhao, C.; Gan,W. J.; Kou, Y. Chin. J. Catal. 2006, 27,1159. [颜宁, 赵晨, 甘维佳, 寇元. 催化学报, 2006, 27,1159.]
-
[20]
(20) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y. J. Am. Chem. Soc. 2006, 128, 8714. doi: 10.1021/ja062468t
-
[21]
(21) Pepper, J. M.; Rahman, M. D. Cell. Chem. Technol. 1987, 21,233.
-
[22]
(22) Thring, R.W.; Katikaneni, S. P. R.; Bakhshi, N. N. Fuel Process. Technol. 2000, 62, 17. doi: 10.1016/S0378-3820(99)00061-2
-
[23]
(23) Jackson, M. A.; Compton, D. L.; Boateng, A. A. J. Anal. Appl. Pyrol. 2009, 85, 226. doi: 10.1016/j.jaap.2008.09.016
-
[24]
(24) Stark, K.; Taccardi, N.; Bosmann, A.;Wasserscheid, P.ChemSusChem 2010, 3, 719. doi: 10.1002/cssc.200900242
-
[25]
(25) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.;Weckhuysen,B. M. Chem. Rev. 2010, 110, 3552. doi: 10.1021/cr900354u
-
[26]
(26) Yan, N.; Zhao, C.; Dyson, P. J.;Wang, C.; Liu, L. T.; Kou, Y.ChemSusChem 2008, 1, 626. doi: 10.1002/cssc.200800080
-
[27]
(27) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Angew. Chem. Int. Edit. 2009, 48, 3987. doi: 10.1002/anie.200900404
-
[28]
(28) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.Chem. Commun. 2010, 46, 412.
-
[29]
(29) Zhao, C.; He, J.; Lemonidou, A. A.; Li, X.; Lercher, J. A.J. Catal. 2011, 280, 8. doi: 10.1016/j.jcat.2011.02.001
-
[30]
(30) Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem. Int. Edit. 2010, 49, 5549. doi: 10.1002/anie.201001531
-
[31]
(31) Pepper, J. M.; Siddiqueullah, M. Can. J. Chem. 1961, 39, 1454.doi: 10.1139/v61-185
-
[32]
(32) Derkacheva, O.; Sukhov, D. Macromol. Symp. 2008, 265, 61.doi: 10.1002/masy.200850507
-
[33]
(33) He, J. X.; Zhang,W.; Li, K. J.; Cui, S. Z.;Wang, S. Y. J. Text. Res. 2009, 30, 13. [何建新, 章伟, 李克兢, 崔世忠, 王善元.纺织学报, 2009, 30, 13.]
-
[34]
(34) Jung, H. J. G.; Himmelsbach, D. S. J. Agric. Food Chem. 1989,81.
-
[35]
(35) Zhang, A. P.; Liu, C. F.; Sun, R. C. Ind. Crop. Prod. 2010, 31,357. doi: 10.1016/j.indcrop.2009.12.003
-
[36]
(36) Faix, O. Holzforschung 1991, 45 (Suppl.), 21.
-
[37]
(37) Dorris, G. M.; Gray, D. G. Cell. Chem. Technol. 1978, 12, 9.
-
[1]
-
-
[1]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[2]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[3]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[4]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[7]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[8]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[9]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[10]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[11]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[12]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[13]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[14]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[15]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[16]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[17]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[18]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[19]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(810)
- Abstract views(2339)
- HTML views(39)