Citation: FAN Hai-Bin, ZHANG Dong-Feng, GUO Lin. Fabrication, Formation Mechanism and the Photocatalytic Properties of Hierarchical Porous Hematite Networks[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206122
-
Hierarchical porous hematite (HPH) network structures were successfully constructed using an improved polymerization induced colloid aggregation process with Fe(NO3)3·9H2O as the raw material. The polymerization between urea and formaldehyde into urea-formaldehyde (UF) resin is the key factor for this construction. The UF resins appear to be advantageous in two respects: the UF oli mer hybrids with ferric hydroxide (Fe-UF) and UF polymer formed microcapsules (UFM) acted as templates to induce the aggregation of Fe-UF hybrids into mesoporous spheres. The further crosslink reactions among the hybrid spheres generate the network structure. After calcination, the decomposition of the UF resin and the UFM produces nanopores in the nanorod subunits and macropores in the network structure, respectively. The photodegradation activity of the unique structured HPH is four times that of the commercial hematite nanoparticles with rhodamine B (RhB) as pollutant.
-
-
[1]
(1) Im, S. H.; Jeong, U. Y.; Xia, Y. N. Nat. Mater. 2005, 4 (9), 671.doi: 10.1038/nmat1448
-
[2]
(2) Yuan, Z. Y.; Su, B. L. J. Mater. Chem. 2006, 16 (7), 663. doi: 10.1039/b512304f
-
[3]
(3) Toberer, E. S.; Seshadri, R. Adv. Mater. 2005, 17 (18), 2244. doi: 10.1002/adma.200500668
-
[4]
(4) Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hirao, K.; Tanaka,N. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 187, 273. doi: 10.1016/S0927-7757(01)00642-2
-
[5]
(5) Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.;Wang, D.; Jiang, L. ACS Nano 2011, 5 (1), 590. doi: 10.1021/nn102767d
-
[6]
(6) Toberer, E. S.; Schladt, T. D.; Seshadri, R. J. Am. Chem. Soc.2006, 128 (5), 1462. doi: 10.1021/ja0579412
-
[7]
(7) Gao, G. D.; Li, J.; Zhang, A. Y.; An, X. H.; Zhou, L. Acta Phys. -Chim. Sin. 2010, 26, 2437. [高冠道, 李婧, 张爱勇,安晓红, 周蕾. 物理化学学报, 2010, 26, 2437.]
-
[8]
(8) Li, H. N.; Zhang, L.; Dai, H. X.; He, H. Inorg. Chem. 2009, 48 (10), 4421. doi: 10.1021/ic900132k
-
[9]
(9) Amutha, R.; Muruganandham, M.; Sathish, M.; Akilandeswari,S.; Suri, R. P. S.; Repo, E.; Sillanpää, M. J. Phys. Chem. C2011, 115 (14), 6367. doi: 10.1021/jp200301g
-
[10]
(10) Jiang, Z. T.; Zuo, Y. M. Anal. Chem. 2001, 73 (3), 686. doi: 10.1021/ac001008u
-
[11]
(11) Peng, X.; Zhang, Q. X.; Cheng, X.; Cao, D. P. Acta Phys. -Chim. Sin. 2011, 27, 2065. [彭璇, 张勤学, 成璇, 曹达鹏. 物理化学学报, 2011, 27, 2065.] doi: 10.3866/PKU.WHXB20110919
-
[12]
(12) Cho, C. Y.; Moon, J. H. Adv. Mater. 2011, 23 (26), 2971.doi: 10.1002/adma.201101042
-
[13]
(13) Barakat, T.; Rooke, J. C.; Tidahy, H. L.; Hosseini, M.; Cousin,R.; Lamonier, J. F.; Giraudon, J. M.; DeWeireld, G.; Su, B. L.;Siffert, S. ChemSusChem 2011, 4 (10), 1420. doi: 10.1002/cssc.201100282
-
[14]
(14) Lee, J.; Kim, J.; Jia, H. F.; Kim, M. I.; Kwak, J. H.; Jin, S. M.;Dohnalkova, A.; Park, H. G.; Chang, H. N.;Wang, P.; Grate, J.W.; Hyeon, T. Small 2005, 1 (7), 744. doi: 10.1002/smll.200500035
-
[15]
(15) Ma, G. X.; Zhong, Q. D.; Lu, X. G.; Lu, T. H. Acta Phys. -Chim. Sin. 2009, 25, 2061. [马国仙, 钟庆东, 鲁雄刚, 陆天虹. 物理化学学报, 2009, 25, 2061.] doi: 10.3866/PKU.WHXB20091037
-
[16]
(16) Croce, F.; Epifanio, A. D.; Hassoun, J.; Deptula, A.; Olczac, T.;Scrosati, B. Electrochem. Solid State Lett. 2002, 5 (3), A47.
-
[17]
(17) Wang, J. H.; Li, B.;Wu, H. Y.; Guo, Y. Z. Acta Phys. -Chim. Sin.2008, 24, 681. [王剑华, 李斌, 吴海燕, 郭玉忠. 物理化学学报, 2008, 24, 681.] doi: 10.3866/PKU.WHXB20080423
-
[18]
(18) Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Chem. Mater. 2008, 20 (3), 667. doi: 10.1021/cm702091q
-
[19]
(19) Li, J. S.; Gu, J.; Ling, X. F.; Sun, X. Y.; Shen, J. Y.; Han,W. Q.;Wang, L. J. Acta Phys. -Chim. Sin. 2011, 27, 1772. [李健生,顾娟, 凌晓凤, 孙秀云, 沈锦优, 韩卫清, 王连军. 物理化学学报, 2011, 27, 1772.] doi: 10.3866/PKU.WHXB20110613
-
[20]
(20) Tsung, C. K.; Fan, J.; Zheng, N. F.; Shi, Q. H.; Forman, A. J.;Wang, J. F.; Stucky, G. D. Angew. Chem. Int. Edit. 2008, 47 (45), 8682. doi: 10.1002/anie.200802487
-
[21]
(21) Li, L. L.; Xu, J.; Yuan, Q.; Li, Z. X.; Song,W. G.; Yan, C. H.Small 2009, 5 (23), 2730. doi: 10.1002/smll.200900901
-
[22]
(22) Yuan, Q.; Duan, H. H.; Li, L. L.; Li, Z. X.; Duan,W. T.; Zhang,L. S.; Song,W. G.; Yan, C. H. Adv. Mater. 2010, 22 (13), 1475.doi: 10.1002/adma.200904223
-
[23]
(23) Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.;Yu, C. Z.; Tu, B.; Zhao, D. Y. Angew. Chem. Int. Edit. 2005, 44 (43), 7053. doi: 10.1002/anie.200501561
-
[24]
(24) Lee, J.; Orilall, M. C.;Warren, S. C.; Kamperman, M.; Disalvo,F. J.;Wiesner, U. Nat. Mater. 2008, 7 (3), 222. doi: 10.1038/nmat2111
-
[25]
(25) Niu, D. C.; Ma, Z.; Li, Y. S.; Shi, J. L. J. Am. Chem. Soc. 2010,132 (43), 15144. doi: 10.1021/ja1070653
-
[26]
(26) Gao, C. B.; Qiu, H. B.; Zeng,W.; Sakamoto, Y.; Terasaki, O.;Sakamoto, K.; Chen, Q.; Che, S. A. Chem. Mater. 2006, 18 (16),3904. doi: 10.1021/cm061107+
-
[27]
(27) Li, G. X.;Wang, T.; He, J. P.; Zhou, J. H.; Xue, H. R.; Ma, Y.O.; Hu, Y. Y. Acta Phys. -Chim. Sin. 2011, 27, 248. [李国显,王涛, 何建平, 周建华, 薛海荣, 马一鸥, 胡园园. 物理化学学报, 2011, 27, 248.] doi: 10.3866/PKU.WHXB20110131
-
[28]
(28) Dong, A. G.; Ren, N.; Tang, Y.;Wang, Y. J.; Zhang, Y. H.; Hua,W. M.; Gao, Z. J. Am. Chem. Soc. 2003, 125 (17), 4976. doi: 10.1021/ja029964b
-
[29]
(29) Brezesinski, K.; Haetge, J.;Wang, J.; Mascotto, S.; Reitz, C.;Rein, A.; Tolbert, S. H.; Perlich, J.; Dunn, B.; Brezesinski, T.Small 2011, 7 (3), 407. doi: 10.1002/smll.201001333
-
[30]
(30) Sadakane, M.; Sasaki, K.; Kunioku, H.; Ohtani, B.; Abe, R.;Ueda,W. J. Mater. Chem. 2010, 20 (9), 1811. doi: 10.1039/b922416e
-
[31]
(31) Hu, J.; Abdelsalam, M.; Bartlett, P.; Cole, R.; Sugawara, Y.;Baumberg, J.; Mahajan, S.; Denuault, G. J. Mater. Chem. 2009,19 (23), 3855. doi: 10.1039/b900279k
-
[32]
(32) Chen, X. Q.; Li, Z. S.; Ye, J. H.; Zou, Z. G. Chem. Mater. 2010,22 (12), 3583. doi: 10.1021/cm100751w
-
[33]
(33) Wu, Q. Z.; Shen, Y.; Li, Y. G. Acta Phys. -Chim. Sin. 2003, 19,737. [邬泉周, 沈勇, 李玉光. 物理化学学报, 2003, 19,737.] doi: 10.3866/PKU.WHXB20030813
-
[34]
(34) Davis, S. A.; Burkett, S. L.; Mendelson, N. H.; Mann, S. Nature1997, 385, 420. doi: 10.1038/385420a0
-
[35]
(35) Liu, Z. T.; Fan, T. X.; Zhang,W.; Zhang, D. Microporous Mesoporous Mat. 2005, 85 (1-2), 82. doi: 10.1016/j.micromeso.2005.06.021
-
[36]
(36) Biette, L.; Carn, F.; Maugey, M.; Achard, M. F.; Maquet, T.;Steunou, N.; Livage, T.; Serier, H.; Backov, R. Adv. Mater.2005, 17 (24), 2970. doi: 10.1002/adma.200501368
-
[37]
(37) Sen, T.; Tiddy, G. J. T.; Casci, J. L.; Anderson, M.W. Angew. Chem. Int. Edit. 2003, 42 (38), 4649. doi: 10.1002/anie.200351479
-
[38]
(38) Shi, Y. F.; Zhang, F.; Hu, Y. S.; Sun, X. H.; Zhang, Y. C.; Lee, H.I.; Chen, L. Q.; Stucky, G. D. J. Am. Chem. Soc. 2010, 132 (16),5552. doi: 10.1021/ja1001136
-
[39]
(39) Ke, X. F.; Cao, J. M.; Zheng, M. B.; Chen, Y. P.; Liu, J. S. Acta Phys. -Chim. Sin. 2007, 23, 757. [柯行飞, 曹洁明, 郑明波, 陈勇平, 刘劲松. 物理化学学报, 2007, 23, 757.] doi: 10.3866/PKU.WHXB20070526
-
[40]
(40) Dacquin, J. P.; Dhainaut, J.; Duprez, D.; Royer, S.; Lee, A. F.;Wilson, K. J. Am. Chem. Soc. 2009, 131 (36), 12896. doi: 10.1021/ja9056486
-
[41]
(41) Yan, H.W.; Blanford, C. F.; Holland, B. T.; Smyrl,W. H.; Stein,A. Chem. Mater. 2000, 12 (4), 1134. doi: 10.1021/cm9907763
-
[42]
(42) Sadakane, M.; Asanuma, T.; Kubo, J.; Ueda,W. Chem. Mater.2005, 17 (13), 3546. doi: 10.1021/cm050551u
-
[43]
(43) Zhang, R.; Dai, H.; Du, Y.; Zhang, L.; Deng, J.; Xia, Y.; Zhao,Z.; Meng, X.; Liu, Y. Inorg. Chem. 2011, 50 (6), 2534. doi: 10.1021/ic1023604
-
[44]
(44) Zhu, G.; Xu, H.; Xiao, Y.; Liu, Y.; Yuan, A.; Shen, X. ACS Appl. Mater. Interfaces 2012, 4 (2), 744. doi: 10.1021/am2013882
-
[45]
(45) Shi, Y.; Li, X.; Hu, J. K.; Lu, J. H.; Ma, Y. C.; Zhang, Y. H.;Tang, Y. J. Mater. Chem. 2011, 21 (40), 16223. doi: 10.1039/c1jm11669j
-
[46]
(46) Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J. A.;Wang, D.Small 2011, 7 (5), 578. doi: 10.1002/smll.201001728
-
[47]
(47) Pattanayak, A.; Subramanian, A. Int. J. Appl. Ceram. Technol.2011, 8 (1), 94. doi: 10.1111/j.1744-7402.2009.02410.x
-
[48]
(48) Pattanayak, A.; Subramanian, A. Powder Technol. 2009, 192 (3), 359. doi: 10.1016/j.powtec.2009.01.023
-
[49]
(49) Blin, J. L.; Leonard, A.; Yuan, Z. Y.; Gi t, L.; Vantomme, A.;Cheetham, A. K.; Su, B. L. Angew. Chem. Int. Edit. 2003, 42 (25), 2872. doi: 10.1002/anie.200250816
-
[50]
(50) Kang, Y. J.; Shan,W.;Wu, J. Y.; Zhang, Y. H.;Wang, X. Y.;Yang,W. L.; Tang, Y. Chem. Mater. 2006, 18 (7), 1861. doi: 10.1021/cm060084w
-
[51]
(51) Han, L.; Shan, Z.; Chen, D. H.; Yu, X. J.; Yang, P. Y.; Tu, B.;Zhao, D. Y. J. Colloid Interface Sci. 2008, 318 (2), 315. doi: 10.1016/j.jcis.2007.10.026
-
[1]
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240086
-
[2]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310013
-
[3]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230435
-
[4]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109038
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230398
-
[6]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240037
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202403005
-
[8]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310013
-
[9]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027
-
[10]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020
-
[11]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230477
-
[12]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230469
-
[13]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406005
-
[14]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406021
-
[15]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407012
-
[16]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202312007
-
[17]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230434
-
[18]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230421
-
[19]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408005
-
[20]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406019
-
[1]
Metrics
- PDF Downloads(1382)
- Abstract views(2392)
- HTML views(6)