Citation: FAN Hai-Bin, ZHANG Dong-Feng, GUO Lin. Fabrication, Formation Mechanism and the Photocatalytic Properties of Hierarchical Porous Hematite Networks[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206122 shu

Fabrication, Formation Mechanism and the Photocatalytic Properties of Hierarchical Porous Hematite Networks

  • Received Date: 2 May 2012
    Available Online: 12 June 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB934700) (973) (2010CB934700) 国家自然科学基金(21173015) (21173015)中央高校基本科研基金(YWF-11-03-Q-085)资助 (YWF-11-03-Q-085)

  • Hierarchical porous hematite (HPH) network structures were successfully constructed using an improved polymerization induced colloid aggregation process with Fe(NO3)3·9H2O as the raw material. The polymerization between urea and formaldehyde into urea-formaldehyde (UF) resin is the key factor for this construction. The UF resins appear to be advantageous in two respects: the UF oli mer hybrids with ferric hydroxide (Fe-UF) and UF polymer formed microcapsules (UFM) acted as templates to induce the aggregation of Fe-UF hybrids into mesoporous spheres. The further crosslink reactions among the hybrid spheres generate the network structure. After calcination, the decomposition of the UF resin and the UFM produces nanopores in the nanorod subunits and macropores in the network structure, respectively. The photodegradation activity of the unique structured HPH is four times that of the commercial hematite nanoparticles with rhodamine B (RhB) as pollutant.

  • 加载中
    1. [1]

      (1) Im, S. H.; Jeong, U. Y.; Xia, Y. N. Nat. Mater. 2005, 4 (9), 671.doi: 10.1038/nmat1448

    2. [2]

      (2) Yuan, Z. Y.; Su, B. L. J. Mater. Chem. 2006, 16 (7), 663. doi: 10.1039/b512304f

    3. [3]

      (3) Toberer, E. S.; Seshadri, R. Adv. Mater. 2005, 17 (18), 2244. doi: 10.1002/adma.200500668

    4. [4]

      (4) Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hirao, K.; Tanaka,N. Colloid Surf. A-Physicochem. Eng. Asp. 2001, 187, 273. doi: 10.1016/S0927-7757(01)00642-2

    5. [5]

      (5) Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.;Wang, D.; Jiang, L. ACS Nano 2011, 5 (1), 590. doi: 10.1021/nn102767d

    6. [6]

      (6) Toberer, E. S.; Schladt, T. D.; Seshadri, R. J. Am. Chem. Soc.2006, 128 (5), 1462. doi: 10.1021/ja0579412

    7. [7]

      (7) Gao, G. D.; Li, J.; Zhang, A. Y.; An, X. H.; Zhou, L. Acta Phys. -Chim. Sin. 2010, 26, 2437. [高冠道, 李婧, 张爱勇,安晓红, 周蕾. 物理化学学报, 2010, 26, 2437.]

    8. [8]

      (8) Li, H. N.; Zhang, L.; Dai, H. X.; He, H. Inorg. Chem. 2009, 48 (10), 4421. doi: 10.1021/ic900132k

    9. [9]

      (9) Amutha, R.; Muruganandham, M.; Sathish, M.; Akilandeswari,S.; Suri, R. P. S.; Repo, E.; Sillanpää, M. J. Phys. Chem. C2011, 115 (14), 6367. doi: 10.1021/jp200301g

    10. [10]

      (10) Jiang, Z. T.; Zuo, Y. M. Anal. Chem. 2001, 73 (3), 686. doi: 10.1021/ac001008u

    11. [11]

      (11) Peng, X.; Zhang, Q. X.; Cheng, X.; Cao, D. P. Acta Phys. -Chim. Sin. 2011, 27, 2065. [彭璇, 张勤学, 成璇, 曹达鹏. 物理化学学报, 2011, 27, 2065.] doi: 10.3866/PKU.WHXB20110919

    12. [12]

      (12) Cho, C. Y.; Moon, J. H. Adv. Mater. 2011, 23 (26), 2971.doi: 10.1002/adma.201101042

    13. [13]

      (13) Barakat, T.; Rooke, J. C.; Tidahy, H. L.; Hosseini, M.; Cousin,R.; Lamonier, J. F.; Giraudon, J. M.; DeWeireld, G.; Su, B. L.;Siffert, S. ChemSusChem 2011, 4 (10), 1420. doi: 10.1002/cssc.201100282

    14. [14]

      (14) Lee, J.; Kim, J.; Jia, H. F.; Kim, M. I.; Kwak, J. H.; Jin, S. M.;Dohnalkova, A.; Park, H. G.; Chang, H. N.;Wang, P.; Grate, J.W.; Hyeon, T. Small 2005, 1 (7), 744. doi: 10.1002/smll.200500035

    15. [15]

      (15) Ma, G. X.; Zhong, Q. D.; Lu, X. G.; Lu, T. H. Acta Phys. -Chim. Sin. 2009, 25, 2061. [马国仙, 钟庆东, 鲁雄刚, 陆天虹. 物理化学学报, 2009, 25, 2061.] doi: 10.3866/PKU.WHXB20091037

    16. [16]

      (16) Croce, F.; Epifanio, A. D.; Hassoun, J.; Deptula, A.; Olczac, T.;Scrosati, B. Electrochem. Solid State Lett. 2002, 5 (3), A47.

    17. [17]

      (17) Wang, J. H.; Li, B.;Wu, H. Y.; Guo, Y. Z. Acta Phys. -Chim. Sin.2008, 24, 681. [王剑华, 李斌, 吴海燕, 郭玉忠. 物理化学学报, 2008, 24, 681.] doi: 10.3866/PKU.WHXB20080423

    18. [18]

      (18) Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Chem. Mater. 2008, 20 (3), 667. doi: 10.1021/cm702091q

    19. [19]

      (19) Li, J. S.; Gu, J.; Ling, X. F.; Sun, X. Y.; Shen, J. Y.; Han,W. Q.;Wang, L. J. Acta Phys. -Chim. Sin. 2011, 27, 1772. [李健生,顾娟, 凌晓凤, 孙秀云, 沈锦优, 韩卫清, 王连军. 物理化学学报, 2011, 27, 1772.] doi: 10.3866/PKU.WHXB20110613

    20. [20]

      (20) Tsung, C. K.; Fan, J.; Zheng, N. F.; Shi, Q. H.; Forman, A. J.;Wang, J. F.; Stucky, G. D. Angew. Chem. Int. Edit. 2008, 47 (45), 8682. doi: 10.1002/anie.200802487

    21. [21]

      (21) Li, L. L.; Xu, J.; Yuan, Q.; Li, Z. X.; Song,W. G.; Yan, C. H.Small 2009, 5 (23), 2730. doi: 10.1002/smll.200900901

    22. [22]

      (22) Yuan, Q.; Duan, H. H.; Li, L. L.; Li, Z. X.; Duan,W. T.; Zhang,L. S.; Song,W. G.; Yan, C. H. Adv. Mater. 2010, 22 (13), 1475.doi: 10.1002/adma.200904223

    23. [23]

      (23) Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.;Yu, C. Z.; Tu, B.; Zhao, D. Y. Angew. Chem. Int. Edit. 2005, 44 (43), 7053. doi: 10.1002/anie.200501561

    24. [24]

      (24) Lee, J.; Orilall, M. C.;Warren, S. C.; Kamperman, M.; Disalvo,F. J.;Wiesner, U. Nat. Mater. 2008, 7 (3), 222. doi: 10.1038/nmat2111

    25. [25]

      (25) Niu, D. C.; Ma, Z.; Li, Y. S.; Shi, J. L. J. Am. Chem. Soc. 2010,132 (43), 15144. doi: 10.1021/ja1070653

    26. [26]

      (26) Gao, C. B.; Qiu, H. B.; Zeng,W.; Sakamoto, Y.; Terasaki, O.;Sakamoto, K.; Chen, Q.; Che, S. A. Chem. Mater. 2006, 18 (16),3904. doi: 10.1021/cm061107+

    27. [27]

      (27) Li, G. X.;Wang, T.; He, J. P.; Zhou, J. H.; Xue, H. R.; Ma, Y.O.; Hu, Y. Y. Acta Phys. -Chim. Sin. 2011, 27, 248. [李国显,王涛, 何建平, 周建华, 薛海荣, 马一鸥, 胡园园. 物理化学学报, 2011, 27, 248.] doi: 10.3866/PKU.WHXB20110131

    28. [28]

      (28) Dong, A. G.; Ren, N.; Tang, Y.;Wang, Y. J.; Zhang, Y. H.; Hua,W. M.; Gao, Z. J. Am. Chem. Soc. 2003, 125 (17), 4976. doi: 10.1021/ja029964b

    29. [29]

      (29) Brezesinski, K.; Haetge, J.;Wang, J.; Mascotto, S.; Reitz, C.;Rein, A.; Tolbert, S. H.; Perlich, J.; Dunn, B.; Brezesinski, T.Small 2011, 7 (3), 407. doi: 10.1002/smll.201001333

    30. [30]

      (30) Sadakane, M.; Sasaki, K.; Kunioku, H.; Ohtani, B.; Abe, R.;Ueda,W. J. Mater. Chem. 2010, 20 (9), 1811. doi: 10.1039/b922416e

    31. [31]

      (31) Hu, J.; Abdelsalam, M.; Bartlett, P.; Cole, R.; Sugawara, Y.;Baumberg, J.; Mahajan, S.; Denuault, G. J. Mater. Chem. 2009,19 (23), 3855. doi: 10.1039/b900279k

    32. [32]

      (32) Chen, X. Q.; Li, Z. S.; Ye, J. H.; Zou, Z. G. Chem. Mater. 2010,22 (12), 3583. doi: 10.1021/cm100751w

    33. [33]

      (33) Wu, Q. Z.; Shen, Y.; Li, Y. G. Acta Phys. -Chim. Sin. 2003, 19,737. [邬泉周, 沈勇, 李玉光. 物理化学学报, 2003, 19,737.] doi: 10.3866/PKU.WHXB20030813

    34. [34]

      (34) Davis, S. A.; Burkett, S. L.; Mendelson, N. H.; Mann, S. Nature1997, 385, 420. doi: 10.1038/385420a0

    35. [35]

      (35) Liu, Z. T.; Fan, T. X.; Zhang,W.; Zhang, D. Microporous Mesoporous Mat. 2005, 85 (1-2), 82. doi: 10.1016/j.micromeso.2005.06.021

    36. [36]

      (36) Biette, L.; Carn, F.; Maugey, M.; Achard, M. F.; Maquet, T.;Steunou, N.; Livage, T.; Serier, H.; Backov, R. Adv. Mater.2005, 17 (24), 2970. doi: 10.1002/adma.200501368

    37. [37]

      (37) Sen, T.; Tiddy, G. J. T.; Casci, J. L.; Anderson, M.W. Angew. Chem. Int. Edit. 2003, 42 (38), 4649. doi: 10.1002/anie.200351479

    38. [38]

      (38) Shi, Y. F.; Zhang, F.; Hu, Y. S.; Sun, X. H.; Zhang, Y. C.; Lee, H.I.; Chen, L. Q.; Stucky, G. D. J. Am. Chem. Soc. 2010, 132 (16),5552. doi: 10.1021/ja1001136

    39. [39]

      (39) Ke, X. F.; Cao, J. M.; Zheng, M. B.; Chen, Y. P.; Liu, J. S. Acta Phys. -Chim. Sin. 2007, 23, 757. [柯行飞, 曹洁明, 郑明波, 陈勇平, 刘劲松. 物理化学学报, 2007, 23, 757.] doi: 10.3866/PKU.WHXB20070526

    40. [40]

      (40) Dacquin, J. P.; Dhainaut, J.; Duprez, D.; Royer, S.; Lee, A. F.;Wilson, K. J. Am. Chem. Soc. 2009, 131 (36), 12896. doi: 10.1021/ja9056486

    41. [41]

      (41) Yan, H.W.; Blanford, C. F.; Holland, B. T.; Smyrl,W. H.; Stein,A. Chem. Mater. 2000, 12 (4), 1134. doi: 10.1021/cm9907763

    42. [42]

      (42) Sadakane, M.; Asanuma, T.; Kubo, J.; Ueda,W. Chem. Mater.2005, 17 (13), 3546. doi: 10.1021/cm050551u

    43. [43]

      (43) Zhang, R.; Dai, H.; Du, Y.; Zhang, L.; Deng, J.; Xia, Y.; Zhao,Z.; Meng, X.; Liu, Y. Inorg. Chem. 2011, 50 (6), 2534. doi: 10.1021/ic1023604

    44. [44]

      (44) Zhu, G.; Xu, H.; Xiao, Y.; Liu, Y.; Yuan, A.; Shen, X. ACS Appl. Mater. Interfaces 2012, 4 (2), 744. doi: 10.1021/am2013882

    45. [45]

      (45) Shi, Y.; Li, X.; Hu, J. K.; Lu, J. H.; Ma, Y. C.; Zhang, Y. H.;Tang, Y. J. Mater. Chem. 2011, 21 (40), 16223. doi: 10.1039/c1jm11669j

    46. [46]

      (46) Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J. A.;Wang, D.Small 2011, 7 (5), 578. doi: 10.1002/smll.201001728

    47. [47]

      (47) Pattanayak, A.; Subramanian, A. Int. J. Appl. Ceram. Technol.2011, 8 (1), 94. doi: 10.1111/j.1744-7402.2009.02410.x

    48. [48]

      (48) Pattanayak, A.; Subramanian, A. Powder Technol. 2009, 192 (3), 359. doi: 10.1016/j.powtec.2009.01.023

    49. [49]

      (49) Blin, J. L.; Leonard, A.; Yuan, Z. Y.; Gi t, L.; Vantomme, A.;Cheetham, A. K.; Su, B. L. Angew. Chem. Int. Edit. 2003, 42 (25), 2872. doi: 10.1002/anie.200250816

    50. [50]

      (50) Kang, Y. J.; Shan,W.;Wu, J. Y.; Zhang, Y. H.;Wang, X. Y.;Yang,W. L.; Tang, Y. Chem. Mater. 2006, 18 (7), 1861. doi: 10.1021/cm060084w

    51. [51]

      (51) Han, L.; Shan, Z.; Chen, D. H.; Yu, X. J.; Yang, P. Y.; Tu, B.;Zhao, D. Y. J. Colloid Interface Sci. 2008, 318 (2), 315. doi: 10.1016/j.jcis.2007.10.026


  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240086

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230435

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230398

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240037

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310013

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230477

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230469

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230434

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230421

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(1382)
  • Abstract views(2393)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return