Citation: ZHAO Peng-Jun, WU Rong, HOU Juan, CHANG Ai-min, GUAN Fang, ZHANG Bo. One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1971-1977. doi: 10.3866/PKU.WHXB201206111
-
One dimensional titanate nanotubes modified with copper nanospheres were synthesized through a facile one-step hydrothermal process. Transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive spectrometry (EDS) were used to monitor the changes in the morphology and phases during the hydrothermal process. The diameter of the Cu-TiO2 composite nanotubes was 10-15 nm and their lengths were ca 100 nm, the dimension of the covered Cu nanoparticles was about 5 nm. Brunauer-Emmett-Teller (BET) tests revealed the specific surface area of the Cu-TiO2 composite nanotubes to be 154.67 m2·g-1. The formation process and mechanism of the composite nanotubes were surveyed by adjusting the hydrothermal duration and titanium precursor. The results revealed that an amorphous titanium precursor is essential for the successful formation of this unique topography and phase composition. Anti-Ostwald ripening, a decrease in the dimensions of the copper nanospheres with hydrothermal time, was observed in the TEM images, which is of benefit to helps keep the particles on the nanoscale. The UV-Vis spectrum of the as-prepared material exhibits a strong absorption at 350-800 nm in the visible band compared with commercial TiO2 nanopowders. The plasmonic absorption of metallic copper particles between 550 and 600 nm is seen in the UV-Vis spectrum. Schottky barriers between copper-TiO2 interfaces make this kind of material a potential agent in speeding up electron transport rates and slowing recombination rates. Photocatalytic experiments demonstrated this unique Cu-TiO2 composite nanotube material has a high photocatalytic activity under visible-light irradiation.
-
-
[1]
(1) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[2]
(2) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红,熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.] doi: 10.3866/PKU.WHXB20100815
-
[3]
(3) Zhang,W.; Zou, L.;Wang, L. Appl. Catal. A 2009, 371, 1.doi: 10.1016/j.apcata.2009.09.038
-
[4]
(4) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.;Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X.W. J. Am. Chem. Soc. 2010, 132, 6124. doi: 10.1021/ja100102y
-
[5]
(5) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Chen, H. M. Adv. Funct. Mater. 2011, 21, 1717. doi: 10.1002/adfm.201002295
-
[6]
(6) Wang, N.; Han, L.; He, H.; Park, N. H.; Koumoto, K. Energy Environ. Sci. 2011, 4, 3676. doi: 10.1039/c1ee01646f
-
[7]
(7) Attar, A. S.; Ghamsari, M. S.; Hajiesmaeilbaigi, F.; Mirdamadi,S.; Katagiri, K.; Koumoto, K. Mater. Chem. Phys. 2009, 113,856. doi: 10.1016/j.matchemphys.2008.08.040
-
[8]
(8) Wang, D.; Yu, B.;Wang, C.; Zhou, F.; Liu,W. Adv. Mater. 2009,21, 1964. doi: 10.1002/adma.200801996
-
[9]
(9) Dai, L.; Sow, C. H.; Lim, C. T.; Cheong,W. C. D.; Tan, V. B. C.Nano Lett. 2009, 9, 576. doi: 10.1021/nl8027284
-
[10]
(10) Lekeufack, D. D.; Brioude, A.; Mouti, A.; Alauzun, J. G.;Stadelmann, P.; Coleman, A.W.; Miele, P. Chem. Commun.2010, 46, 4544. doi: 10.1039/c0cc00935k
-
[11]
(11) Yuan, J.;Wang, Y.; Chen, Y.; Yang,W.; Yao, J.; Cao, Y. Appl. Surf. Sci. 2011, 257, 7335. doi: 10.1016/j.apsusc.2011.03.139
-
[12]
(12) Sathish, M.; Viswanathan, B.; Viswanath, R. P.; pinath, C. S.Chem. Mater. 2005, 17, 6349. doi: 10.1021/cm052047v
-
[13]
(13) Liu, G.;Wang, X.; Chen, Z.; Cheng, H. M.; Lu, G. Q. J. Colloid Interface Sci. 2009, 329, 331. doi: 10.1016/j.jcis.2008.09.061
-
[14]
(14) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526
-
[15]
(15) Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, Y.;Wu, F.; Song, D.J. Phys. Chem. B 2004, 108, 2868. doi: 10.1021/jp036821i
-
[16]
(16) Lei, B. X.; Liao, J. Y.; Zhang, R.;Wang, J.; Su, C. Y.; Kuang, D.B. J. Phys. Chem. C 2010, 114, 15228.
-
[17]
(17) Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J. Nano Lett.2007, 7, 3739. doi: 10.1021/nl072145a
-
[18]
(18) Huang, B.; Yang, Y.; Chen, X.; Ye, D. Catal. Commun. 2010, 11,844. doi: 10.1016/j.catcom.2010.03.006
-
[19]
(19) Viana, B. C.; Ferreira, O. P.; Filho, A. G. S.; Rodrigues, C. M.;Moraes, S. G.; Filho, J. M.; Alves, O. L. J. Phys. Chem. C 2009,113, 20234. doi: 10.1021/jp9068043
-
[20]
(20) Chu, S.; Zheng, X.; Kong, F.;Wu, G.; Luo, L.; Guo, Y.; Liu, H.;Wang, Y.; Yu, H.; Zou, Z.; Liu, Z. Mater. Chem. Phys. 2011,129, 1184. doi: 10.1016/j.matchemphys.2011.06.004
-
[21]
(21) Zhao, G., Lei, Y.; Zhang, Y.; Li, H.; Liu, M. J. Phys. Chem. C2008, 112, 14786. doi: 10.1021/jp712054c
-
[22]
(22) Chien, S.; Liou, Y. C.; Kuo, M. C. Synthetic Metals 2005, 152,333. doi: 10.1016/j.synthmet.2005.07.254
-
[23]
(23) Wang, C.; Yin, L.; Zhang, L.; Liu, N.; Lun, N.; Qi, Y. ACS Appl. Mater. Interfaces 2010, 2, 3373. doi: 10.1021/am100834x
-
[24]
(24) Macak, J. M.; Schmidt-Stein, F.; Schmuki, P. Electrochem. Commun. 2007, 9, 1783. doi: 10.1016/j.elecom.2007.04.002
-
[25]
(25) Zeng, H.; Cai,W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.;Kalt, H. ACS Nano 2008, 2, 1661. doi: 10.1021/nn800353q
-
[26]
(26) Kumar, V.; Adamson, D. H.; Prudhomme, R. K. Small 2010, 6,2907. doi: 10.1002/smll.201001199
-
[27]
(27) Jia,W.; Douglas, E. P. J. Mater. Chem. 2004, 14, 744. doi: 10.1039/b311917c
-
[28]
(28) Nakahira, A.; Kubo, T.; Numako, C. Inorg. Chem. 2010, 49,5845. doi: 10.1021/ic9025816
-
[29]
(29) Huang, J.; Cao, Y.; Huang, Q.; He, H.; Liu, Y.; Guo,W.; Hong,M. Cryst. Growth Des. 2009, 9, 3632. doi: 10.1021/cg900381h
-
[30]
(30) Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang,W. F.; Yang, Z. Y.;Wang, N. Appl. Phys. Lett. 2003, 82, 281. doi: 10.1063/1.1537518
-
[31]
(31) Kochkar, H.; Lakhdhar, N.; Berhault, G.; Bausach, M.; Ghorbel,A. J. Phys. Chem. C 2009, 113, 1672. doi: 10.1021/jp809131z
-
[32]
(32) Xu, S.; Ng, J.; Zhang, X.; Bai, H.; Sun, D. D. Int. J. Hydrog. Energy 2010, 35, 5254. doi: 10.1016/j.ijhydene.2010.02.129
-
[33]
(33) Boccuzzi, F.; Coluccia, S.; Martra, G.; Ravasio, N. J. Catal.1999, 184, 316. doi: 10.1006/jcat.1999.2428
-
[34]
(34) Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355.doi: 10.1021/ja980861w
-
[35]
(35) Doremus, R. H.; Rao, P. J. Mater. Res. 1996, 11, 2384.
-
[36]
(36) Pestryakov, A. N.; Petranovskii, V. P.; Kryazho, A.; Ozhereliev,O.; Pfcander, N.; Knop-Gericke, A. Chem. Phys. Lett. 2004,385, 173. doi: 10.1016/j.cplett.2003.12.077
-
[1]
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[3]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[4]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[6]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[7]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[12]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[13]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[14]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[15]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[16]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[17]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[1]
Metrics
- PDF Downloads(998)
- Abstract views(3166)
- HTML views(31)