Citation: ZHANG Ji-Chao, CHENG Xue-Li, CHENG Yu-Qiao, MENG Xiang-Hua, LIU Yong-Jun, LIU Cheng-Bu. Selectivity of [2+2] C=O Cycloaddition and α-H Cleavage of Carbonyl Compounds on Si(100) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1849-1853. doi: 10.3866/PKU.WHXB201206081 shu

Selectivity of [2+2] C=O Cycloaddition and α-H Cleavage of Carbonyl Compounds on Si(100) Surface

  • Received Date: 1 April 2012
    Available Online: 8 June 2012

    Fund Project: 国家自然科学基金(21173129)资助项目 (21173129)

  • Recent studies have demonstrated that a simple ketone [acetone, (CH3)2C=O)] reacts with the Si(100) surface in a [2+2] C=O cycloaddition or by α-H cleavage to form Si―C and/or Si―O σ-bonds. To understand the reactivity of carbonyl compounds bearing different substitutes, the [2 + 2] C=O cycloaddition and α-H cleavage of carbonyl compounds CH3COR (R=CH3, H, C2H5, C6H5) on Si(100) surface have been investigated using density functional theory at the B3LYP/6-311 ++ G(d,p)//6-31G(d) level. Our calculation results reveal that: (1) both cycloaddition and α-H cleavage corresponds to very low energy barriers (lower than 25 kJ·mol-1), and the energy barrier for cycloaddition is slightly higher than α-H cleavage; (2) the substituents on the carbonyl compound [CH3COR] has only a minor influence on the energy barrier; (3) the α-H cleavage reactions are thermodynamically and kinetically more favorable than cycloadditions; (4) for the α-H cleavage of butanone, reactions at C1 and C3 positions are competitive. These findings suggest that the reactions of ketone derivatives with Si(100) surface will generate multiple products.

  • 加载中
    1. [1]

      (1) Barriocanal, J. A.; Doren, D. J. J. Am. Chem. Soc. 2001, 123,7340. doi: 10.1021/ja010003r

    2. [2]

      (2) Mui, C.;Wang, G. T.; Bent, S. F.; Musgrave, C. B. J. Chem. Phys. 2001, 114, 10170. doi: 10.1063/1.1370056

    3. [3]

      (3) Wang, G. T.; Mui, C.; Musgrave, C. B.; Bent, S. F. J. Am. Chem. Soc. 2002, 124, 8990. doi: 10.1021/ja026330w

    4. [4]

      (4) Mui, C.; Han, J. H.;Wang, G. T.; Musgrave, C. B.; Bent, S. F.J. Am. Chem. Soc. 2002, 124, 4027. doi: 10.1021/ja0171512

    5. [5]

      (5) Hamai, C.; Takagi, A.; Taniguchi, M.; Matsumoto, T.; Kawai, T.Angew. Chem. Int. Edit. 2004, 43, 1349. doi: 10.1002/anie.200352074

    6. [6]

      (6) Hwang, H. N.; Baik, J. Y.; An, K. S.; Lee, S. S.; Kim, Y.;Hwang, C. C.; Kim, B. J. Phys. Chem. B 2004, 108, 8379. doi: 10.1021/jp0498769

    7. [7]

      (7) Lee, J. Y.; Choa, J. H. J. Chem. Phys. 2004, 121, 8010. doi: 10.1063/1.1799953

    8. [8]

      (8) Takeuchi, N.; Selloni, A. J. Phys. Chem. B 2005, 109, 11967.

    9. [9]

      (9) Schofield, S. R.; Saraireh, S. A.; Smith, P. V.; Radny, M.W.;King, B. V. J. Am. Chem. Soc. 2007, 129, 11402. doi: 10.1021/ja0719069

    10. [10]

      (10) Tang, H. H.; Cai, Y. H.; Ning, Y. S.; Lai, Y. H.; Xu, G. Q. Surf. Sci. 2007, 601, 3293. doi: 10.1016/j.susc.2007.05.018

    11. [11]

      (11) Hossain, M. Z.; Kato, H. S.; Kawai, M. J. Am. Chem. Soc. 2007,129, 12304. doi: 10.1021/ja074464+

    12. [12]

      (12) Saraireh, S. A.; Smith, P. V.; Radny, M.W.; Schofield, S. R.;King, B. V. Surf. Sci. 2008, 602, 3484. doi: 10.1016/j.susc.2008.08.027

    13. [13]

      (13) Carbone, M.; Cazzato, P.; Caminiti, R. Surf. Sci. 2009, 603, 611.doi: 10.1016/j.susc.2008.12.029

    14. [14]

      (14) Prayongpan, P.; Greenlief, C. M. Surf. Sci. 2009, 603, 1055. doi: 10.1016/j.susc.2009.02.025

    15. [15]

      (15) Ebrahimi, M.; Leung, K. T. Surf. Sci. 2009, 603, 1203. doi: 10.1016/j.susc.2009.03.005

    16. [16]

      (16) Demirel, G. B.; Çakmak, M.; Çaykara, T. Surf. Sci. 2011, 605,1056.

    17. [17]

      (17) Czekala, P. T.; Lin, H.; Hofer,W. A.; Gulans, A. Surf. Sci. 2011,605, 1341.

    18. [18]

      (18) Belcher, D. R.; Schofield, S. R.;Warschkow, O. Radny, M.W.;Smith, P. V. J. Chem. Phys. 2009, 131, 104707. doi: 10.1063/1.3224174

    19. [19]

      (19) Wang, G. T.; Mui, C.; Musgrave, C. B.; Bent, S. F. J. Phys. Chem. B 2001, 105, 12559. doi: 10.1021/jp013058o

    20. [20]

      (20) Saraireh, S. A.; Schofield, S. R.; Smith, P. V.; Radny, M.W.King, B. V. Surf. Sci. 2007, 601, 5757. doi: 10.1016/j.susc.2007.06.054

    21. [21]

      (21) Ferraz, A. C.; Miotto, R. Appl. Surf. Sci. 2004, 234, 185. doi: 10.1016/j.apsusc.2004.05.090

    22. [22]

      (22) Lu, X.; Zhang, Q.; Lin, M. C. Phys. Chem. Chem. Phys. 2001,3, 2156.

    23. [23]

      (23) Boukherroub, R.; Morin, S., Sharpe, P.;Wayner, D. D. M.Langmuir 2000, 16, 7429. doi: 10.1021/la991678z

    24. [24]

      (24) Pitters, J. L.; Dogel, I.; DiLabio, G. A.;Wolkow, R. A. J. Phys. Chem. B 2006, 110, 2159. doi: 10.1021/jp055153t

    25. [25]

      (25) Ardalan, P.; Dupont, G.; Musgrave, C. B. J. Phys. Chem. C2011, 115, 7477.

    26. [26]

      (26) Tong, X.; DiLabio, G. A.; Clarkin, O. J.;Wolkow, R. A. Nano Lett. 2004, 4, 357. doi: 10.1021/nl035021g

    27. [27]

      (27) Lee, C.; Yang,W.; Parr, G. Phys. Rev. B 1998, 37, 785.

    28. [28]

      (28) Kurnaz, E.; Fellah, M. F.; Onal, I. Microporous Mesoporous Mat. 2001, 138, 68.

    29. [29]

      (29) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03,Revision D.01; Gaussian Inc.:Wallingford, CT, 2004.

    30. [30]

      (30) Qi, Y.; Chen, Z.; Li, P. Comput. Theor. Chem. 2011, 969, 61.doi: 10.1016/j.comptc.2011.05.013

    31. [31]

      (31) Zhou, Z. J.; Huang, X. R.; Li, Q. Z.; Sun, C. C. Comput. Theor. Chem. 2011, 965, 22. doi: 10.1016/j.comptc.2011.01.016

    32. [32]

      (32) Tao, T. T.; Zhou, Z. J.; Yang,Y. H.; Liu, H. L.; Huang, X. R.;Sun, C. C. Comput. Theor. Chem. 2011, 965, 123.

    33. [33]

      (33) Guo, X.W.; Teng, B. T.; Yuan, J. H.; Zhao, Y.; Zhao, Y.; Liu, S.Acta Phys. -Chim. Sin. 2011, 27, 1068. [郭晓伟, 腾波涛, 袁金焕, 赵云, 赵越, 刘莎. 物理化学学报, 2011, 27, 1068.]doi: 10.3866/PKU.WHXB20110438

    34. [34]

      (34) ng, L. F.;Wu, X. M.; Li,W.; Qi, C. S. Acta Phys. -Chim. Sin.2011, 27, 831. [龚良发, 吴新民, 李巍, 戚传松. 物理化学学报, 2011, 27, 831.] doi: 10.3866/PKU.WHXB20110412

    35. [35]

      (35) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1990, 94, 5523.doi: 10.1021/j100377a021

    36. [36]

      (36) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.doi: 10.1063/1.456010


  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(682)
  • Abstract views(3052)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return