Citation: ZHENG Bin, ZHANG An-Feng, LIU Min, DING Fan-Shu, DAI Cheng-Yi, SONG Chun-Shan, GUO Xin-Wen. Properties of the Nano-Particle Fe-based Catalyst for the Hydrogenation of Carbon Dioxide to Hydrocarbons[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1943-1950. doi: 10.3866/PKU.WHXB201206051 shu

Properties of the Nano-Particle Fe-based Catalyst for the Hydrogenation of Carbon Dioxide to Hydrocarbons

  • Received Date: 10 March 2012
    Available Online: 5 June 2012

  • Combining co-precipitation-gelation, mechanical mixing and impregnation methods, a series of catalysts of FeK-M/γ-Al2O3(M=Cd or Cu) have been attained. The catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 physisorption, X-ray diffraction (XRD) and temperature-programmed reduction of hydrogen (H2-TPR). The hydrogenation of carbon dioxide over these catalysts was also investigated in a fixed bed. Given a reaction time of 100 h, CO2 conversion over a 15%Fe/10%K/γ-Al2O3 catalyst reached 51.3 %, with a selectivity towards C2+ of 62.6 % at 3 MPa, 673 K, a space velocity of 3600 h-1 and at a molar ratio of H2/CO2 of 3. At the lower Fe content of 2.5%, the selectivity towards C2+ was still greater than 60.0%. Increasing the potassium content from 0% to 10%, increased the selectivity towards C2-C4= and the molar ratio of C2-C4= /C2-C40 increased to 3.6. The addition of Cd and Cu improved the reduction and catalytic activities. Specifically, Cu improved the molar ratio of C2-C4= /C2-C40 from 3.6 to 5.4, and the Cd increased the selectivity of C5+ by 12%.

  • 加载中
    1. [1]

      (1) rdon, D.W.; Calvin, H. B. J. Catal. 1984, 87, 352. doi: 10.1016/0021-9517(84)90196-9

    2. [2]

      (2) Song, C. S. Catal. Today 2006, 115, 2. doi: 10.1016/j.cattod.2006.02.029

    3. [3]

      (3) Martin, P. R.; Dominik, U.; Georg, S. Ind. Eng. Chem. Res.2005, 44, 9653. doi: 10.1021/ie050289z

    4. [4]

      (4) King, D. L.; Cusumano, J. A.; Garten, R. L. Cat. Rev. -Sci. Eng.1981, 23, 233. doi: 10.1080/03602458108068077

    5. [5]

      (5) Srivastava, R. D.; Rao, V. U. S.; Cinquegrane, G.; Stiegel, G. J.Hydrocarbon Process 1990, 69, 59.

    6. [6]

      (6) Choi, P. H.; Jun, K.W.; Lee, S. J.; Choi, M. J.; Lee, K.W. Catal. Lett. 1996, 40, 115. doi: 10.1007/BF00807467

    7. [7]

      (7) Soled, S.; Iglesia, E.; Fiato, R. A. Catal. Lett. 1990, 7, 271.

    8. [8]

      (8) Raje, A. P.; O'Brien, R. J.; Davis, B. H. J. Catal. 1998, 180, 36.doi: 10.1006/jcat.1998.2259

    9. [9]

      (9) Mostafa, F.; Mohsen, I.; Ali, A. M. Fuel Process. Technol. 2011,92, 1136. doi: 10.1016/j.fuproc.2011.01.010

    10. [10]

      (10) Luo, X.; Hou, C. P.;Wu, Y.; Xia, G. F.; Nie, H. Acta Petrolei. Sinica 2011, 27 (1), 26. [罗熙, 侯朝鹏, 吴玉, 夏国富,聂红. 石油学报, 2011, 27 (1), 26.]

    11. [11]

      (11) Dorner, R.W.; Hardy, D. R.;Williams, F.W.;Willauer, H. D.Catal. Commun. 2010, 11, 816. doi: 10.1016/j.catcom.2010.02.024

    12. [12]

      (12) Dorner, R.W.; Hardy, D. R.;Williams, F.W.;Willauer, H. D.Appl. Catal. A 2010, 373, 112. doi: 10.1016/j.apcata.2009.11.005

    13. [13]

      (13) Yu,W. Q.;Wu, B. S.; Xu, J.; Tao, Z. C.; Xiang, H.W. Catal. Lett. 2008, 125, 116. doi: 10.1007/s10562-008-9524-3

    14. [14]

      (14) Wang, H.; Hao, Q. L.; Liu, F. X.; Zhang, C. H.; Yang, Y.; Tian,L.; Bai, L.; Xiang, H.W.; Li, Y.W.; Xu, B. F.; Yi, F. J. Fuel Chem. Tech. 2005, 33 (1) 89. [王洪, 郝庆兰, 刘福霞, 张承华, 杨勇, 田磊, 白亮, 相宏伟, 李永旺, 徐斌富, 易凡.燃料化学学报, 2005, 33 (1), 89.]

    15. [15]

      (15) Wang, L. L.;Wu, B. S.; Li, Y.W. Chin . J. Catal. 2011, 32, 495.[王立丽, 吴宝山, 李永旺. 催化学报, 2011, 32, 495.]

    16. [16]

      (16) Wang, H. L.; Yang, Y.;Wang, H.; Qing, M.; Xiang, H.W.; Li, Y.W. Chin. J. Catal. 2010, 31, 809. [王虎林, 杨勇, 王洪,青明, 相宏伟, 李永旺. 催化学报, 2010, 31, 809.]

    17. [17]

      (17) Dorner, R.W.; Hardy, D. R.;Williams, F.W.;Willauer, H. D.Energ. Environ. Sci. 2010, 3, 884. doi: 10.1039/c001514h

    18. [18]

      (18) Dorner, R.W.; Hardy, D. R.;Williams, F.W.;Willauer, H. D.Catal. Commun. 2011, 15, 88. doi: 10.1016/j.catcom.2011.08.017

    19. [19]

      (19) Xu, L. Y.;Wang, Q. X.; Lin, L.W.; Liang, D. B.; Yang, L. Nat. Gas. Chem. Ind. 1997, 22, 10. [徐龙伢, 王清遐, 林励吾, 梁东白, 杨力. 天然气化工, 1997, 22, 10.]

    20. [20]

      (20) Ren, D. M.; Zhou, Y. S. Ind. Catal. 2004, 12, 32. [任冬梅, 周亚松. 工业催化, 2004, 12, 32.]

    21. [21]

      (21) Sarkar, A.; Seth, D.; Dozier, A. K.; Neathery, J. K.; Hamdeh, H.H.; Davis, B. H. Catal. Lett. 2007, 117 (1), 1.

    22. [22]

      (22) Pour, A. N.; Housaindokht, M. R.; Tayyari, S. F.; Zarkesh, J.J. Nat. Gas. Chem. 2010, 19, 284. doi: 10.1016/S1003-9953(09)60059-1

    23. [23]

      (23) Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J. J. Phys. Chem. B 2000, 104, 1141. doi: 10.1021/jp993552g

    24. [24]

      (24) Eriksson, S.; Nylen, U.; Rojas, S.; Boutonnet, M. Appl. Catal. A2004, 265, 207. doi: 10.1016/j.apcata.2004.01.014

    25. [25]

      (25) Pour, A. N.; Housaindokht, M. R.; Babakhani, E. G.; Irani, M.;Shalri, S. M. K. J. Ind. Eng. Chem. 2011, 17, 596. doi: 10.1016/j.jiec.2011.05.002

    26. [26]

      (26) Guo, X. H.; Zhong, S. L.; Zhang, J.;Wang,W.; Mao, J. J.; Xie.G. J. Mater. Sci. 2010, 45, 6467. doi: 10.1007/s10853-010-4733-8

    27. [27]

      (27) Sai-Prasad, P. S.; Jong,W. B.; Ki,W. J.; Kyu,W. L. Catal. Surv. Asia 2008, 12, 170. doi: 10.1007/s10563-008-9049-1

    28. [28]

      (28) Schulz, H.; Riedel, T.; Schaub, G. Top. Catal. 2005, 32, 117.doi: 10.1007/s11244-005-2883-8

    29. [29]

      (29) Mao, D. S.; Guo, Q. S.; Yu, J.; Han, L. P.; Lu, G. Z. Acta Phys. -Chim. Sin. 2011, 27, 2639. [毛东森, 郭强胜, 俞俊,韩璐蓬, 卢冠忠. 物理化学学报, 2011, 27, 2639.] doi: 10.3866/PKU.WHXB20111125

    30. [30]

      (30) Li, S. Z.; Krishnamoorthy, S.; Li, A.W.; Meitzner, G. D.;Iglesia, E. J. Catal. 2002, 206, 202. doi: 10.1006/jcat.2001.3506

    31. [31]

      (31) Lox, E. S.; Froment, G. F. Ind. Eng. Chem. Res. 1993, 32, 71.doi: 10.1021/ie00013a011

    32. [32]

      (32) Riedel, T.; Schulz, H.; G. Schaub, G.; Jun, K.W.; Hwang, J. S.;Lee, K.W. Top. Catal. 2003, 26, 41. doi: 10.1023/B:TOCA.0000012986.46680.28

    33. [33]

      (33) Zhang, C. H.; Yang, Y.; Teng, B. T.; Li, T. Z.; Zheng, H. Y.;Xiang, H.W.; Li, Y.W. J. Catal. 2006, 237, 405. doi: 10.1016/j.jcat.2005.11.004

    34. [34]

      (34) Ding, M. Y.; Yang, Y.; Xiang, H.W.; Li, Y.W. Chin. J. Catal.2010, 31, 1145. [定明月, 杨勇, 相宏伟, 李永旺. 催化学报,2010, 31, 1145].

    35. [35]

      (35) Dalai, A. K.; Davis, B. H. Appl. Catal. A 2008, 348 (1), 1.

    36. [36]

      (36) Riedel, T.; Schaub, G.; Jun, K.W.; Lee, K.W. Ind. Eng. Chem. Res. 2001, 40, 1355. doi: 10.1021/ie000084k

    37. [37]

      (37) Rohde, M. P.; Unruh, D.; Schaub, G. I. Ind. Eng. Chem. Res.2005, 44, 9653.

    38. [38]

      (38) Temkin, O. N.; Zeigarnik, A. V.; Kuzmin, A. E.; Bruk, L. G.;Slivinskii, E. V. Russ. Chem. Bull. 2002, 51 (1), 1.

    39. [39]

      (39) Chang, J.; Teng, B. T.; Bai, L.; Zhang, R. L.; Xiang, H.W.; Li,Y.W.; Sun, Y. H. Coal Convers. 2005, 28 (2), 1. [常杰, 滕波涛, 白亮, 张荣乐, 相宏伟, 李永旺, 孙予罕. 煤炭转化, 2005,28 (2), 1.]

    40. [40]

      (40) Zhi, P. L.; Hu, P. J. Am. Chem. Soc. 2002, 124, 39.

    41. [41]

      (41) Schulz, H.; Claeys, M. Appl. Catal. A 1999, 186, 91. doi: 10.1016/S0926-860X(99)00166-0

    42. [42]

      (42) Blyholder, G. J. Phys. Chem. 1964, 68, 2772. doi: 10.1021/j100792a006

    43. [43]

      (43) Pichler, H.; Schulz, H. Chem. Ing. Tech. 1970, 12, 1160.

    44. [44]

      (44) Han, J. L.; Chun, C. C.; Jia, J. H. J. Phys. Chem. C 2011, 115,11045.


  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    6. [6]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(802)
  • Abstract views(3101)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return