Citation: YANG Xiao-Yan, SUN Song, DING Jian-Jun, ZHANG Yi, ZHANG Man-Man, GAO Chen, BAO Jun. Preparation, Structure and Performance of [CuO-ZnO-Al2O3]/ [HZSM-5] Core-Shell Bifunctional Catalysts for One-Step Synthesis of Dimethyl Ether from CO2+H2[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1957-1963. doi: 10.3866/PKU.WHXB201206011
-
A series of core-shell bifunctional catalysts [CuO-ZnO-Al2O3]/[HZSM-5] for one-step synthesis of dimethyl ether from CO2 hydrogenation were prepared by a hydrothermal synthesis method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The catalyst has a core-shell structure with an integral and compact shell of HZSM-5 coated on the surface of a pre-shaped CuO-ZnO-Al2O3 pellet. The crystallite size and thickness of the zeolite shell can be controlled by the crystallization time. Compared with the mechanically mixed catalyst, the core-shell catalyst shows much higher selectivity for dimethyl ether synthesis from CO2 + H2. The core-shell catalyst with a crystallization time of 3 d shows the best catalytic performance, with a CO2 conversion of 38.9% and a dimethyl ether selectivity of 77.0%.
-
-
[1]
(1) Liu, C. X.; Ding, P.; Liu,W. Y.;Wang,W. T.; Liu, J. Renewable Energy 2006, 4, 54. [刘存祥, 丁攀, 刘文艺, 王文堂, 刘杰. 可再生能源, 2006, 4, 54.]
-
[2]
(2) Sidhu, S.; Graham, J.; Striebich, R. Chemosphere 2001, 42, 681.doi: 10.1016/S0045-6535(00)00242-3
-
[3]
(3) Demirbas, A. Energy Sources Part A 2008, 30, 1473. doi: 10.1080/15567030701258519
-
[4]
(4) Omata, K.;Watanabe, Y.; Umegaki, T.; Ishiguro, G.; Yamada,M. Fuel 2002, 81, 1605. doi: 10.1016/S0016-2361(02)00080-7
-
[5]
(5) Stryjek, R.; Bobbo, S.; Camporese, R.; Zilio, C. J. Chem. Eng. Data 1999, 44, 568. doi: 10.1021/je980240i
-
[6]
(6) Bobbo, S.; Camporese, R.; Stryjeck, R. Fluid Phase Equilib.1999, 161, 305. doi: 10.1016/S0378-3812(99)00194-6
-
[7]
(7) Chang, Y. H.; Han, Y. Z.;Wang, X. K.; Yang, C. H.; Li,W. B.Petrochem. Technol. 2000, 29, 829. [常雁红, 韩怡卓, 王心葵,杨彩虹, 李文彬. 石油化工, 2000, 29, 829.]
-
[8]
(8) Man, J. M.; Zhang, Q. D.; Xie, H. J.; Pan, J. X.; Tan, Y. S.; Han,Y. Z. J. Fuel Chem. Technol. 2011, 39, 42. [满建明, 张清德,解红娟, 潘俊轩, 谭猗生, 韩怡卓. 燃料化学学报, 2011, 39, 42.]doi: 10.1016/S1872-5813(11)60008-X
-
[9]
(9) Li, J.; Tan, Y. S.; Han, Y. Z. Chem. Ind. Eng. Prog. 2010, 29 (Suppl. 3), 466. [李剑, 谭猗生, 韩怡卓. 化工进展, 2010,29 (增刊3), 466.]
-
[10]
(10) Xia, J. C.; Mao, D. S.; Chen, Q. L.; Tang, Y. Petrochem. Technol. 2004, 33, 788. [夏建超, 毛东森, 陈庆铃, 唐颐.石油化工, 2004, 33, 788.]
-
[11]
(11) Pontzen, F.; Liebner,W.; Gronemann, V.; Rothaemel, M.;Ahlers, B. Catal. Today 2011, 171, 242. doi: 10.1016/j.cattod.2011.04.049
-
[12]
(12) Olah, G. A.; Prakash, G. K.S.; eppert, A. J. Am. Chem. Soc.2011, 133, 12881. doi: 10.1021/ja202642y
-
[13]
(13) Dubois, J. L.; Sayama, K.; Arakawa, H. Chem. Lett. 1992, 21,1115.
-
[14]
(14) Wang, J. Y.; Zeng, C. Y.;Wu, C. Z. Chin. J. Catal. 2006, 27,927. [王继元, 曾崇余, 吴昌子. 催化学报, 2006, 27, 927.]
-
[15]
(15) Zhao, Y. Q.; Chen, J. X.; Zhang, J. X.; Zhang, J. Y. J. Fuel Chem. Technol. 2005, 33, 334. [赵彦巧, 陈吉祥, 张建祥,张继炎. 燃料化学学报, 2005, 33, 334.]
-
[16]
(16) Sun, K. P.; Lu,W.W.;Wang, M.; Xu, X. L. Catal. Commun.2004, 5, 367. doi: 10.1016/j.catcom.2004.03.012
-
[17]
(17) He, J. J.; Liu, Z. L.; Yoneyama, Y.; Nishiyama, N.; Tsubaki, N.Chem. Eur. J. 2006, 12, 8296. doi: 10.1002/chem.200501295
-
[18]
(18) He, J. J.; Yoneyama, Y.; Xu, B. L.; Nishiyama, N.; Tsubaki, N.Langmuir 2005, 21, 1699. doi: 10.1021/Ia047217h
-
[19]
(19) Yang, G. H.; He, J. J.; Yoneyama, Y.; Tan, Y. S.; Han, Y. Z.;Tsubaki, N. Appl. Catal. A 2007, 329, 99. doi: 10.1016/j.apcata.2007.06.028
-
[20]
(20) Deng, J. F.; Sun, Q.; Zhang, Y. L. Appl. Catal. A 1996, 139, 75.doi: 10.1016/0926-860X(95)00324-X
-
[21]
(21) Yang, G. H.; Tsubaki, N.; Shamoto, J.; Yoneyama, Y.; Zhang, Y.J. Am. Chem. Soc. 2010, 132, 8129. doi: 10.1021/ja101882a
-
[22]
(22) Naik, S.P.; Ryu, T.; Bui, V.; Miller, J. D.; Drinnan, N. B.;Zmierczak,W. Chem. Eng. J. 2011, 167, 362. doi: 10.1016/j.cej.2010.12.087
-
[23]
(23) Zha, F.; Ding, J.; Chang, Y.; Ding, J. F.;Wang, J. Y.; Ma. J. Ind. Eng. Chem. Res. 2012, 51, 345. doi: 10.1021/ie202090f
-
[24]
(24) Bao, J.; He, J. J.; Zhang, Y.; Nishiyama, N.; Tsubaki, N. Angew. Chem. Int. Edit. 2008, 47, 353. doi: 10.1002/anie.200703335
-
[25]
(25) Nie, R. F.; Lei, H.; Pan, S. Y.;Wang, L. N.; Fei, J. H.; Hou, Z. Y.Fuel 2012, 96, 419. doi: 10.1016/j.fuel.2011.12.048
-
[1]
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[4]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[5]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[6]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[7]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[12]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[13]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[14]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[16]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[17]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[18]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[19]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[20]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[1]
Metrics
- PDF Downloads(773)
- Abstract views(2483)
- HTML views(40)