Citation: YANG Shu, YANG Xiao-Mei, XIE Xiao-Guang. Theoretical Study of Gas-Phase Reaction of YS+ (1Σ+, 3Φ) with COS: YS++COS→YS2++CO[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1892-1898. doi: 10.3866/PKU.WHXB201205241
-
The gas-phase reactions of YS+ (1Σ+, 3Φ) with an S-transfer reagent (COS), YS++COS→YS2++CO, were studied using density functional theory at the B3LYP/6-311+G* level. Four parallel reaction pathways were identified on both the ground- and excited-state surfaces. The mechanisms and the geometrical change trends on the different surfaces are quite different, except in the case of one reaction channel. The experimentally observed endothermic feature of the formation of YS2+ can be attributed to three reaction paths, A, B, and C, with calculation barriers of 28.3, 140.5, and 120.2 kJ mol-1, respectively, on the ground singlet surface. Our calculation results show that the title reactions have no two-state reactivity and the exothermic feature of the YS2+ cross-section observed in the experiments is attributed to reaction of the residual excited-state of YS+ in the reactants.
-
Keywords:
-
Yttrium sulfide cation
, - COS,
- Reaction mechanism,
- B3LYP
-
-
-
[1]
(1) Stiefel, E. I.; Matsmoto, K. Transition Metal Sulfur Chemistry, ACS Symposium Series 653, 1st ed.; American ChemicalSociety:Washington DC, 1996; pp 2-38.
-
[2]
(2) Bhadure, M.; Mitchell, P. C. H. J. Catal. 1982, 77, 132. doi: 10.1016/0021-9517(82)90153-1
-
[3]
(3) Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 208. doi: 10.1021/j100364a034
-
[4]
(4) Schults, R. H.; Elkind, J. L.; Armentrout, P. B. J. Am. Chem. Soc. 1988, 110, 411. doi: 10.1021/ja00210a017
-
[5]
(5) Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313. doi: 10.1146/annurev.pc.41.100190.001525
-
[6]
(6) Castleman, A.W.; Keesee, R. G. Chem. Rev. 1986, 86, 589. doi: 10.1021/cr00073a005
-
[7]
(7) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout,P. B. J. Phys. Chem. A 2000, 104 (21), 5046. doi: 10.1021/jp994228o
-
[8]
(8) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2006, 249/250, 263.
-
[9]
(9) Kretzschmar, I.; Fiedler, A.; Harvey, J. N.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 1997, 101 (35), 6252. doi: 10.1021/jp971941+
-
[10]
(10) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.;Armentrout, P. B. J. Phys. Chem. A 1998, 102 (49), 10060. doi: 10.1021/jp982199w
-
[11]
(11) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2003, 228, 439.
-
[12]
(12) Armentrout, P. B.; Kretzschmar, I. J. Phys. Chem. A 2009, 113 (41), 10955. doi: 10.1021/jp907253r
-
[13]
(13) Rue, C.; Armentrout, P. B.; Kretzschmar, I.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 2002, 106 (42), 9788. doi: 10.1021/jp020161k
-
[14]
(14) Flemmig, B.; Kretzschmar, I.; Friend, C. M.; Hoffmann, R.J. Phys. Chem. A 2004, 108 (15), 2972. doi: 10.1021/jp0369701
-
[15]
(15) Frommer, J.; Nachtegaal, M.; Czekaj, I.;Weng, T.; Kretzschmar,R. J. Phys. Chem. A 2009, 113 (44), 12171. doi: 10.1021/jp902604p
-
[16]
(16) Villarroel, O. J.; Laboren, I. E.; Bellert, D. J. J. Phys. Chem. A2012, 116 (12), 3081. doi: 10.1021/jp2047135
-
[17]
(17) Gennari, M.; Retegan, M.; DeBeer, S.; Pécaut, J.; Neese, F.;Collomb, M.; Duboc, C. Inorg. Chem. 2011, 50 (20), 10047.doi: 10.1021/ic200899w
-
[18]
(18) Chandrasekhar, V.; Senapati, T.; Dey, A,; Das, S.; Kalisz, M.;Clérac, R. Inorg. Chem. 2012, 51 (4), 2031. doi: 10.1021/ic201463g
-
[19]
(19) Yang, X.; Yu, S.; Li, T.; Yao, L.; Hu, D.; Xie, X. J. Mol. Struct. -Theochem 2009, 901 (1/3), 34.
-
[20]
(20) Gao, S. L.; Xu, J. L.; Xie, X. G. Chem. Phys. 2005, 312, 187.doi: 10.1016/j.chemphys.2004.11.040
-
[21]
(21) Xie, X.; Gao, S.; Xu, J. J. Mol. Struct. -Theochem 2005, 715 (1/3), 65.
-
[22]
(22) Yu, S.; Li, T.; Yao, L.; Yang, X.; Xie, X. J. Mol. Struct. - Theochem 2009, 901 (1/3), 249.
-
[23]
(23) udbout, N.; Salahub, D. R.; Andzelm, J.;Wimmer, E. Can. J. Chem. 1992, 70, 560. doi: 10.1139/v92-079
-
[24]
(24) Chase, M.W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.;McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data1985, 14 (Suppl. 1), 1112.
-
[25]
(25) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353. doi: 10.1021/cr980404y
-
[26]
(26) Read, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[28]
(28) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Advances in Metal and Semi-Conductor Clusters: Metal-Ligand Bonding and Metal-Ion Solvation, 1st ed.; Elsevier: New York,2001; Vol. 5, p347.
-
[1]
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[3]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[4]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[5]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[6]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[7]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[8]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[9]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[10]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[11]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[12]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[13]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[14]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[15]
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
-
[16]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[17]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[18]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[19]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[20]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[1]
Metrics
- PDF Downloads(614)
- Abstract views(2094)
- HTML views(47)