Citation: JIN Rong-Rong, LI Li-Fang, XU Xue-Feng, LIAN Ying-Hui, ZHAO Fan. Layered Double Hydroxide Supported Palladium Nanoparticles for Electrocatalytic Oxidation of Hydrazine[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1929-1935. doi: 10.3866/PKU.WHXB201205231
-
A Mg-Al layered double hydroxide (LDH) was prepared from Mg(NO3)2·6H2O and Al((NO3)3· 9H2O by a constant-pH co-precipitation method at room temperature. PdCl24- was successfully introduced into the gallery space of the Mg-Al-LDH via an ion exchange process, and then reduced by hydrazine to produce LDH-supported palladium (LDH-Pd0) nanomaterials. The sample was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that palladium nanoparticles were well dispersed on the LDH surface. The LDH-Pd0 nanomaterial was immobilized on a glassy carbon electrode (GCE) to oxidize hydrazine in a phosphate buffer solution (PBS, pH 7.0) using cyclic voltammetry (CV). The modified electrode exhibited excellent electrocatalytic activity and thus could be used to determine the concentration of hydrazine. This was verified by examining the amperometric response at a working potential of -0.1 V, where it was found that the anodic peak current of the modified electrodes was linear with hydrazine concentration in the range of 1.0×10-5-2.0×10-4 mol·L-1. The detection limit was 9.5×10-7 mol·L-1 at a signal-to-noise ratio of 3. The electrochemically effective surface areas were determined by chrono-coulometry (CC) to be 0.02089, 0.02762, and 0.02496 cm2 for GCE, LDH-Pd0/GCE, and LDH/GCE, respectively. The irreversible oxidation of hydrazine on the modified electrode is diffusion controlled with the participation of four electrons and four protons.
-
-
[1]
(1) Umar, A.; Rahman, M. M.; Kim, S. H.; Hahn, Y. B. Chem. Commun. 2008, No. 2, 166.
-
[2]
(2) Garrod, S.; Bollard, M. E.; Nicholls, A.W.; Connor, S. C.;Connelly, J.; Nicholson, J. K.; Holmes, E. Chem. Res. Toxicol.2005, 18 (2), 115. doi: 10.1021/tx0498915
-
[3]
(3) George, M.; Nagaraja, K. S.; Balasubramanian, N. Anal. Lett.2007, 40 (13), 2597. doi: 10.1080/00032710701585552
-
[4]
(4) Chen, X. T.; Xiang, Y.; Li, Z. F.; Tong, A. J. Anal. Chim. Acta2008, 625 (1), 41. doi: 10.1016/j.aca.2008.07.016
-
[5]
(5) Ensafi, A. A.; Rezaei, B. Talanta 1998, 47 (3), 645. doi: 10.1016/S0039-9140(98)00113-1
-
[6]
(6) Sun, M. J.; Bai, L.; Liu, D. Q. J. Pharm. Biomed. Anal. 2009, 49 (2), 529. doi: 10.1016/j.jpba.2008.11.009
-
[7]
(7) Safavi, A.; Karimi, M. A. Talanta 2002, 58 (4), 785 doi: 10.1016/S0039-9140(02)00362-4
-
[8]
(8) He, Z. K.; Fuhrmann, B.; Spohn, U. Anal. Chim. Acta 2000, 409 (1-2), 83. doi: 10.1016/S0003-2670(99)00890-9
-
[9]
(9) Yamada, K.; Yasuda, K.; Tanaka, H.; Miyazaki, Y.; Kobayashi,T. J. Power Sources 2003, 122 (2), 132. doi: 10.1016/S0378-7753(03)00440-3
-
[10]
(10) Casella, I. G.; Guascito, M. R.; Salvi, A. M.; Desimoni, E. Anal. Chim. Acta 1997, 354 (1-3), 333. doi: 10.1016/S0003-2670(97)00453-4
-
[11]
(11) Umar, A.; Rahman, M. M.; Hahn,Y. B. Talanta 2009, 77 (4),1376. doi: 10.1016/j.talanta.2008.09.020
-
[12]
(12) Salimia, A.; Miranzad, L.; Hallaj, R. Talanta 2008, 75 (1), 147.
-
[13]
(13) Wang, G. F.; Gu, A. X.;Wang,W.;Wei, Y.;Wu, J. J.;Wang, G.Z.; Zhang, X. J.; Fang, B. Electrochem. Commun. 2009, 11 (3),631. doi: 10.1016/j.elecom.2008.12.061
-
[14]
(14) Ivanov, S.; Lange, U.; Tsakova, V.; Mirsky, V. M. Sens. Actuators B 2010, 150 (1), 271. doi: 10.1016/j.snb.2010.07.004
-
[15]
(15) You, J. M.; Jeong, Y. N.; Ahmed, M. S.; Kim, S. K.; Choi, H. C.;Jeon, S. Biosens. Bioelectron. 2011, 26 (5), 2287. doi: 10.1016/j.bios.2010.09.053
-
[16]
(16) Zhang, H. J.; Huang, J. S.; Hou, H. P.; You, T. Y. Electroanalysis2009, 21 (16), 1869. doi: 10.1002/elan.200904630
-
[17]
(17) Ji, X.; Banks, C. E.; Holloway, A. F.; Jurkschat, K.; Thoro od,C. A.;Wild- ose, G. G.; Compton, R. G. Electroanalysis2006, 18 (24), 2481. doi: 10.1002/elan.200603681
-
[18]
(18) Baron, R.; Sljukic, B.; Salter, C.; Crossley, A.; Compton, R. G.Electroanalysis 2007, 19 (10), 1062. doi: 10.1002/elan.200703822
-
[19]
(19) Li, F.; Zhang, B.; Dong, S.;Wang, E. Electrochim. Acta 1997,42 (16), 2563. doi: 10.1016/S0013-4686(96)00450-1
-
[20]
(20) Guo, D. J.; Li, H. L. Electrochem. Commun. 2004, 6 (10), 999.doi: 10.1016/j.elecom.2004.07.014
-
[21]
(21) Guo, D. J.; Li, H. L. J. Colloid Interface Sci. 2005, 286 (1), 274.doi: 10.1016/j.jcis.2004.12.042
-
[22]
(22) Dong, B.; He, B. L.; Huang, J.; Gao, G. Y.; Yang, Z.; Li, H. L.J. Power Sources 2008, 175 (1), 266. doi: 10.1016/j.jpowsour.2007.08.090
-
[23]
(23) Shen, Y.; Xu, Q.; Gao, H.; Zhu, N. N. Electrochem. Commun.2009, 11 (6), 1329. doi: 10.1016/j.elecom.2009.05.005
-
[24]
(24) Shao, C. Y.; Lu, N.; Deng, Z. X. J. Electroanal. Chem. 2009,629 (1-2), 15. doi: 10.1016/j.jelechem.2009.01.006
-
[25]
(25) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.;Sreedhar, B. J. Am. Chem. Soc. 2002, 124 (47), 14127. doi: 10.1021/ja026975w
-
[26]
(26) Xu, M. K.; Li, L. F.; Xu, J.;Wang, D. Q. J. Dispersion Sci. Technol. 2004, 32 (7), 1.
-
[27]
(27) u, G. J.; Ma, P. H.; Chu, M. X. Acta Phys. -Chim. Sin. 2004,20, 1357. [苟国敬, 马培华, 褚敏雄. 物理化学学报, 2004,20, 1357.] doi: 10.3866/PKU.WHXB20041114
-
[28]
(28) Ren, Q. L.; Zhang, Z. F.; Luo, Q. Acta Phys. -Chim. Sin. 2004,20, 318. [任庆利, 张赞锋, 罗强. 物理化学学报, 2004, 20,318.] doi: 10.3866/PKU.WHXB20040321
-
[29]
(29) Luckza, T. Electrochim. Acta 2008, 53 (19), 5725. doi: 10.1016/j.electacta.2008.03.052
-
[30]
(30) Laviron, E. J. Electroanal. Chem. 1974, 52 (3), 355. doi: 10.1016/S0022-0728(74)80448-1
-
[31]
(31) Kim, S. K.; Jeong, Y. N. Sens. Actuators B 2011, 153 (1), 246.doi: 10.1016/j.snb.2010.10.039
-
[32]
(32) Adams, R. N. Electrochemistry at Solid Electrodes; MarcelDekker: New York, 1969; pp 220-222.
-
[33]
(33) Anson, F. Anal. Chem. 1964, 36 (4), 932. doi: 10.1021/ac60210a068
-
[1]
-
-
[1]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[2]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[3]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[4]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[5]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[6]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[7]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[10]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[11]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[12]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[13]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[14]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[18]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[19]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[20]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[1]
Metrics
- PDF Downloads(879)
- Abstract views(2697)
- HTML views(38)