Citation: ZHAO Wei-Na, LIN Hua-Xiang, LI Yi, ZHANG Yong-Fan, HUANG Xin, CHEN Wen-Kai. Coverage-Dependent Adsorption of X Clusters (X=Pt-Au, Au-Au) on the Defect-Free (3×2) TiO2(110) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1861-1868. doi: 10.3866/PKU.WHXB201205214 shu

Coverage-Dependent Adsorption of X Clusters (X=Pt-Au, Au-Au) on the Defect-Free (3×2) TiO2(110) Surface

  • Received Date: 20 March 2012
    Available Online: 21 May 2012

    Fund Project: 国家自然科学基金(90922022) (90922022)华中科技大学煤燃烧国家重点实验室开放基金(FSKLCC1110)资助项目 (FSKLCC1110)

  • Based on spin-polarized density functional theory and generalized gradient approximation (DFT-GGA) calculations, the coverage-dependent adsorption of X bimetallic clusters (X=Pt-Au, Au-Au) on the (3 × 2) TiO2(110) surface has been investigated utilizing periodic supercell models in the absence of oxygen vacancy sites. Only the ground-state structures corresponding to the given coverage patterns (θ= 1/6-1 ML) for X clusters are discussed in this work. The unambiguous results reveal that the adsorption energies increase with coverage up to 1/2 ML and then decrease except for when saturated coverage is reached. According to the interaction with X clusters, it is more feasible at all coverage levels to create a monolayer film of Pt-Au bimetallic clusters on the TiO2(110) surface than it is to create a monolayer of Au- Au clusters, even though the adsorption energy of the Pt-Au/TiO2 adsorption system is smaller in comparison with that of the Au-Au/TiO2 system. Importantly, especially for the half and saturated coverages, there is a broadening of X peaks overlapping with the TiO2 state ranging from -3.0 eV to the Fermi level, suggesting a strong interaction between the surface and bimetallic cluster. Also of particular interest is the adsorptive mechanism where the X-TiO2 interaction is the main driving force at the initial stage of the adsorption process, whereas the X-X interaction controls the process as the coverage increases.

  • 加载中
    1. [1]

      (1) Harada, M.; Asakura, K.; Toshima, N. J. Phys. Chem. 1993, 97,5103. doi: 10.1021/j100121a042

    2. [2]

      (2) Luo, J.; Maye, M. M.; Petkov, V.; Kariuki, N. N.;Wang, L. Y.;Njoki, P.; Mott, D.; Lin, Y.; Zhong, C. J. Chem. Mater. 2005, 17,3086. doi: 10.1021/cm050052t

    3. [3]

      (3) Scott, R.W. J.; Sivadinarayana, C.;Wilson, O. M.; Yan, Z.; odman, D.W.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127,1380. doi: 10.1021/ja044446h

    4. [4]

      (4) Wang, Y.; Toshima, N. J. Phys. Chem. B 1997, 101, 5301. doi: 10.1021/jp9704224

    5. [5]

      (5) Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J. L.;Delcourt, M. O. New J. Chem. 1998, 22, 1239. doi: 10.1039/a801445k

    6. [6]

      (6) Link, S.;Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999,103, 3529. doi: 10.1021/jp990387w

    7. [7]

      (7) Fang, Y. H.; Liu, Z. P. J. Am. Chem. Soc. 2010, 132, 18214. doi: 10.1021/ja1069272

    8. [8]

      (8) Notoya, F.; Su, C.; Sasaoka, E. Ind. Eng. Chem. Res. 2001, 40,3732. doi: 10.1021/ie000972f

    9. [9]

      (9) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0

    10. [10]

      (10) Pang, C. L.; Lindsay, R.; Thornton, G. Chem. Soc. Rev. 2008,37, 2328. doi: 10.1039/b719085a

    11. [11]

      (11) Wang, C. M.; Fan, K. N.; Liu, Z. P. J. Am. Chem. Soc. 2007,129, 2642. doi: 10.1021/ja067510z

    12. [12]

      (12) ng, X. Q.; Liu, Z. P.; Raval, R.; Hu, P. J. Am. Chem. Soc.2004, 126, 8. doi: 10.1021/ja030392k

    13. [13]

      (13) Yudanov, I.; Pacchioni, G.; Neyman, K.; Ro1sch, N. J. Phys. Chem. B 1997, 101, 2786. doi: 10.1021/jp962487x

    14. [14]

      (14) Rodriguez, J. A.; Liu, G.; Jirsak, T.; Hrbek, J.; Chang, Z.;Dvorak, J.; Maiti, A. J. Am. Chem. Soc. 2002, 124, 5242. doi: 10.1021/ja020115y

    15. [15]

      (15) Pabisiak, T.; Kiejna, A. Surf. Sci. 2011, 605, 668. doi: 10.1016/j.susc.2010.12.033

    16. [16]

      (16) Henderson, M. A. Surf. Sci. Rep. 2002, 46, 1. doi: 10.1016/S0167-5729(01)00020-6

    17. [17]

      (17) Chen, S. H.; Xu, Y.; Lü, B. L.;Wu, D. Acta Phys. -Chim. Sin.2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.] doi: 10.3866/PKU.WHXB20112933

    18. [18]

      (18) Dong, H, Q.; Pan, X.; Xie, Q.; Meng, Q. Q.; Gao, J. R.;Wang, J.G. Acta Phys. -Chim. Sin. 2012, 28, 44. [董华青, 潘西,谢琴, 孟强强, 高建荣, 王建国. 物理化学学报, 2012, 28,44.] doi: 10.3866/PKU.WHXB20122844

    19. [19]

      (19) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428.

    20. [20]

      (20) Ganduglia-Pirovano, M. V.; Hofmanna, A.; Sauer, J. Surf. Sci. Rep. 2007, 62, 219. doi: 10.1016/j.surfrep.2007.03.002

    21. [21]

      (21) Tomohito, T.; Matsunaga, K.; Ikuhara, Y.; Yamamoto, T. Phys. Rev. B 2003, 68, 205213. doi: 10.1103/PhysRevB.68.205213

    22. [22]

      (22) Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.;Catalette, H. Theor. Chem. Acc. 2007, 117, 565. doi: 10.1007/s00214-006-0189-y

    23. [23]

      (23) Ramamoorthy, M.; Vanderbilt, D.; King-Smith, R. D. Phys. Rev. B 1994, 49, 16721. doi: 10.1103/PhysRevB.49.16721

    24. [24]

      (24) Cui, H. F.; Ye, J. S.; Liu, X.; Zhang,W. D.; Sheu, F. S.Nanotechnology 2006, 17, 2334. doi: 10.1088/0957-4484/17/9/043

    25. [25]

      (25) Qian, L.; Yang, X. R. J. Phys. Chem. B 2006, 110, 16672. doi: 10.1021/jp063302h

    26. [26]

      (26) Wu, M. L.; Chen, D. H.; Huang, T. C. Chem. Mater. 2001, 13,599. doi: 10.1021/cm0006502

    27. [27]

      (27) Lu, Y.; Yuan, J. Y.; Polzer, F.; Drechsler, M.; Preussner, J. Nano2010, 4, 7078.

    28. [28]

      (28) Hernández-Fernández, P.; Rojas, S.; Ocón, P.; Gómez de laFuente, J. L.; San Fabián, J.; Sanza, J.; Peña, M. A.; García-García, F. J.; Terreros, P.; Fierro, J. L. G. J. Phys. Chem. C2007, 111, 2913. doi: 10.1021/jp066812k

    29. [29]

      (29) Tenney, S. A.; Ratliff, J. S.; Roberts, C. C.; He,W.; Ammal, S.C.; Heyden, A.; Chen, D. A. J. Phys. Chem. C 2010, 114, 21652.doi: 10.1021/jp108939h

    30. [30]

      (30) Park, J. B.; Conner, S. F.; Chen, D. A. J. Phys. Chem. C 2008,112, 5490. doi: 10.1021/jp076027n

    31. [31]

      (31) Wen, D.; Guo, S.;Wang, Y.; Dong, S. Langmuir 2010, 26,11401. doi: 10.1021/la100869r

    32. [32]

      (32) Boronat, M.; Corma, A. Langmuir 2010, 26, 16607. doi: 10.1021/la101752a

    33. [33]

      (33) Payne, M.; Teter, M.; Allan, D.; Arias, T.; Joannopoulos, J. Rev. Mod. Phys. 1992, 64, 1045. doi: 10.1103/RevModPhys.64.1045

    34. [34]

      (34) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864

    35. [35]

      (35) Jones, R.; Gunnarsson, O. Rev. Mod. Phys. 1989, 61, 689. doi: 10.1103/RevModPhys.61.689

    36. [36]

      (36) Kohn,W.; Sham, L. Phys. Rev. 1965, 140, 1133. doi: 10.1103/PhysRev.140.A1133

    37. [37]

      (37) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244

    38. [38]

      (38) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452

    39. [39]

      (39) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015

    40. [40]

      (40) niakowski, J.; Holender, J. M.; Kantorovich, L. N.; Gillan,M. J. Phys. Rev. B 1996, 53, 957. doi: 10.1103/PhysRevB.53.957

    41. [41]

      (41) Sanz, J. F.; Márquez, A. J. Phys. Chem. C 2007, 111, 3949. doi: 10.1021/jp0639952

    42. [42]

      (42) niakowski, J.; Gillan, M. J. Surf. Sci. 1996, 350, 145. doi: 10.1016/0039-6028(95)01252-4

    43. [43]

      (43) White, J. A.; Bird, D. M.; Payne, M. C.; Stich, I. Phys. Rev. Lett.1994, 73, 1404. doi: 10.1103/PhysRevLett.73.1404

    44. [44]

      (44) Versluis, L.; Zeigler, T. J. Chem. Phys. 1988, 88, 322. doi: 10.1063/1.454603

    45. [45]

      (45) von Barth, U.; Hedin, L. J. Phys. C 1972, 5, 1629. doi: 10.1088/0022-3719/5/13/012

    46. [46]

      (46) Matsuzawa, N.; Seto, J. E.; Dixon, D. A. J. Phys. Chem. A 1997,101, 9391. doi: 10.1021/jp952465v

    47. [47]

      (47) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

    48. [48]

      (48) Fernandez, S.; Markovits, A.; Miont, C. J. Phys. Chem. C 2008,112, 14010. doi: 10.1021/jp800708u

    49. [49]

      (49) Zou, X. J.; Ding, K. N.; Zhang, Y. F.; Li, J. Q. Int. J. Quantum Chem. 2011, 111, 915. doi: 10.1002/qua.22454

    50. [50]

      (50) Zhu, J.; Jin, H.; Chen,W. J.; Li, Y.; Zhang, Y. F.; Ning, L. X;Huang, X.; Ding, K. N; Chen,W. K. J. Phys. Chem. C 2009,113, 17509. doi: 10.1021/jp906194t

    51. [51]

      (51) Mazheika, A. S.; Matulis, V. E.; Ivashkevich, O. A. J. Mol. Struct. 2009, 909, 75.

    52. [52]

      (52) Zeng, Q. S.; Chen,W. K.; Dai,W. X.; Zhang, Y. F.; Li, Y.; Guo,X. Chin. J. Catal. 2010, 31, 423. [曾庆松, 陈文凯, 戴文新,章永凡, 李奕, 郭欣. 催化学报, 2010, 31, 423.]

    53. [53]

      (53) Lopez, N.; Nørskov, J. K. Surf. Sci. 2002, 515, 175. doi: 10.1016/S0039-6028(02)01873-3

    54. [54]

      (54) Markovits, A.; Paniagua, J. C.; López, N.; Minot, C.; Illas, F.Phys. Rev. B 2003, 67, 115417. doi: 10.1103/PhyRevB.67.115417

    55. [55]

      (55) Labat, F.; Baranek, P.; Domain, C.; Minot, C.; Adamo, C.J. Chem. Phys. 2007, 126, 154703. doi: 10.1063/1.2717168

    56. [56]

      (56) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J.W.,Jr.; Smith, J. V. J. Am. Chem. Soc. 1987, 109, 3639. doi: 10.1021/ja00246a021

    57. [57]

      (57) Thiên-Nga, L.; Paxon, A. T. Phys. Rev. B 1998, 58, 13233. doi: 10.1103/PhysRevB.58.13233

    58. [58]

      (58) Yang, Z.;Wu, R.; odman, D.W. Phys. Rev. B 2000, 61,14066. doi: 10.1103/PhysRevB.61.14066

    59. [59]

      (59) Lai, X.; Clair, T. P. S.; Valden, M.; odman, D.W. Prog. Surf. Sci. 1998, 59, 25. doi: 10.1016/S0079-6816(98)00034-3

    60. [60]

      (60) Bates, S. P.; Kresse, G.; Gillan, M. J. Surf. Sci. 1997, 385, 386.doi: 10.1016/S0039-6028(97)00265-3

    61. [61]

      (61) Mattsson, A. E.; Jennison, D. R. Surf. Sci. 2002, 520, L611.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

Metrics
  • PDF Downloads(840)
  • Abstract views(3253)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return