Citation: ZHAO Wei-Na, LIN Hua-Xiang, LI Yi, ZHANG Yong-Fan, HUANG Xin, CHEN Wen-Kai. Coverage-Dependent Adsorption of X Clusters (X=Pt-Au, Au-Au) on the Defect-Free (3×2) TiO2(110) Surface[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1861-1868. doi: 10.3866/PKU.WHXB201205214
-
Based on spin-polarized density functional theory and generalized gradient approximation (DFT-GGA) calculations, the coverage-dependent adsorption of X bimetallic clusters (X=Pt-Au, Au-Au) on the (3 × 2) TiO2(110) surface has been investigated utilizing periodic supercell models in the absence of oxygen vacancy sites. Only the ground-state structures corresponding to the given coverage patterns (θ= 1/6-1 ML) for X clusters are discussed in this work. The unambiguous results reveal that the adsorption energies increase with coverage up to 1/2 ML and then decrease except for when saturated coverage is reached. According to the interaction with X clusters, it is more feasible at all coverage levels to create a monolayer film of Pt-Au bimetallic clusters on the TiO2(110) surface than it is to create a monolayer of Au- Au clusters, even though the adsorption energy of the Pt-Au/TiO2 adsorption system is smaller in comparison with that of the Au-Au/TiO2 system. Importantly, especially for the half and saturated coverages, there is a broadening of X peaks overlapping with the TiO2 state ranging from -3.0 eV to the Fermi level, suggesting a strong interaction between the surface and bimetallic cluster. Also of particular interest is the adsorptive mechanism where the X-TiO2 interaction is the main driving force at the initial stage of the adsorption process, whereas the X-X interaction controls the process as the coverage increases.
-
-
[1]
(1) Harada, M.; Asakura, K.; Toshima, N. J. Phys. Chem. 1993, 97,5103. doi: 10.1021/j100121a042
-
[2]
(2) Luo, J.; Maye, M. M.; Petkov, V.; Kariuki, N. N.;Wang, L. Y.;Njoki, P.; Mott, D.; Lin, Y.; Zhong, C. J. Chem. Mater. 2005, 17,3086. doi: 10.1021/cm050052t
-
[3]
(3) Scott, R.W. J.; Sivadinarayana, C.;Wilson, O. M.; Yan, Z.; odman, D.W.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127,1380. doi: 10.1021/ja044446h
-
[4]
(4) Wang, Y.; Toshima, N. J. Phys. Chem. B 1997, 101, 5301. doi: 10.1021/jp9704224
-
[5]
(5) Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J. L.;Delcourt, M. O. New J. Chem. 1998, 22, 1239. doi: 10.1039/a801445k
-
[6]
(6) Link, S.;Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999,103, 3529. doi: 10.1021/jp990387w
-
[7]
(7) Fang, Y. H.; Liu, Z. P. J. Am. Chem. Soc. 2010, 132, 18214. doi: 10.1021/ja1069272
-
[8]
(8) Notoya, F.; Su, C.; Sasaoka, E. Ind. Eng. Chem. Res. 2001, 40,3732. doi: 10.1021/ie000972f
-
[9]
(9) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0
-
[10]
(10) Pang, C. L.; Lindsay, R.; Thornton, G. Chem. Soc. Rev. 2008,37, 2328. doi: 10.1039/b719085a
-
[11]
(11) Wang, C. M.; Fan, K. N.; Liu, Z. P. J. Am. Chem. Soc. 2007,129, 2642. doi: 10.1021/ja067510z
-
[12]
(12) ng, X. Q.; Liu, Z. P.; Raval, R.; Hu, P. J. Am. Chem. Soc.2004, 126, 8. doi: 10.1021/ja030392k
-
[13]
(13) Yudanov, I.; Pacchioni, G.; Neyman, K.; Ro1sch, N. J. Phys. Chem. B 1997, 101, 2786. doi: 10.1021/jp962487x
-
[14]
(14) Rodriguez, J. A.; Liu, G.; Jirsak, T.; Hrbek, J.; Chang, Z.;Dvorak, J.; Maiti, A. J. Am. Chem. Soc. 2002, 124, 5242. doi: 10.1021/ja020115y
-
[15]
(15) Pabisiak, T.; Kiejna, A. Surf. Sci. 2011, 605, 668. doi: 10.1016/j.susc.2010.12.033
-
[16]
(16) Henderson, M. A. Surf. Sci. Rep. 2002, 46, 1. doi: 10.1016/S0167-5729(01)00020-6
-
[17]
(17) Chen, S. H.; Xu, Y.; Lü, B. L.;Wu, D. Acta Phys. -Chim. Sin.2011, 27, 2933. [陈淑海, 徐耀, 吕宝亮, 吴东. 物理化学学报, 2011, 27, 2933.] doi: 10.3866/PKU.WHXB20112933
-
[18]
(18) Dong, H, Q.; Pan, X.; Xie, Q.; Meng, Q. Q.; Gao, J. R.;Wang, J.G. Acta Phys. -Chim. Sin. 2012, 28, 44. [董华青, 潘西,谢琴, 孟强强, 高建荣, 王建国. 物理化学学报, 2012, 28,44.] doi: 10.3866/PKU.WHXB20122844
-
[19]
(19) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428.
-
[20]
(20) Ganduglia-Pirovano, M. V.; Hofmanna, A.; Sauer, J. Surf. Sci. Rep. 2007, 62, 219. doi: 10.1016/j.surfrep.2007.03.002
-
[21]
(21) Tomohito, T.; Matsunaga, K.; Ikuhara, Y.; Yamamoto, T. Phys. Rev. B 2003, 68, 205213. doi: 10.1103/PhysRevB.68.205213
-
[22]
(22) Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.;Catalette, H. Theor. Chem. Acc. 2007, 117, 565. doi: 10.1007/s00214-006-0189-y
-
[23]
(23) Ramamoorthy, M.; Vanderbilt, D.; King-Smith, R. D. Phys. Rev. B 1994, 49, 16721. doi: 10.1103/PhysRevB.49.16721
-
[24]
(24) Cui, H. F.; Ye, J. S.; Liu, X.; Zhang,W. D.; Sheu, F. S.Nanotechnology 2006, 17, 2334. doi: 10.1088/0957-4484/17/9/043
-
[25]
(25) Qian, L.; Yang, X. R. J. Phys. Chem. B 2006, 110, 16672. doi: 10.1021/jp063302h
-
[26]
(26) Wu, M. L.; Chen, D. H.; Huang, T. C. Chem. Mater. 2001, 13,599. doi: 10.1021/cm0006502
-
[27]
(27) Lu, Y.; Yuan, J. Y.; Polzer, F.; Drechsler, M.; Preussner, J. Nano2010, 4, 7078.
-
[28]
(28) Hernández-Fernández, P.; Rojas, S.; Ocón, P.; Gómez de laFuente, J. L.; San Fabián, J.; Sanza, J.; Peña, M. A.; García-García, F. J.; Terreros, P.; Fierro, J. L. G. J. Phys. Chem. C2007, 111, 2913. doi: 10.1021/jp066812k
-
[29]
(29) Tenney, S. A.; Ratliff, J. S.; Roberts, C. C.; He,W.; Ammal, S.C.; Heyden, A.; Chen, D. A. J. Phys. Chem. C 2010, 114, 21652.doi: 10.1021/jp108939h
-
[30]
(30) Park, J. B.; Conner, S. F.; Chen, D. A. J. Phys. Chem. C 2008,112, 5490. doi: 10.1021/jp076027n
-
[31]
(31) Wen, D.; Guo, S.;Wang, Y.; Dong, S. Langmuir 2010, 26,11401. doi: 10.1021/la100869r
-
[32]
(32) Boronat, M.; Corma, A. Langmuir 2010, 26, 16607. doi: 10.1021/la101752a
-
[33]
(33) Payne, M.; Teter, M.; Allan, D.; Arias, T.; Joannopoulos, J. Rev. Mod. Phys. 1992, 64, 1045. doi: 10.1103/RevModPhys.64.1045
-
[34]
(34) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864
-
[35]
(35) Jones, R.; Gunnarsson, O. Rev. Mod. Phys. 1989, 61, 689. doi: 10.1103/RevModPhys.61.689
-
[36]
(36) Kohn,W.; Sham, L. Phys. Rev. 1965, 140, 1133. doi: 10.1103/PhysRev.140.A1133
-
[37]
(37) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
-
[38]
(38) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
-
[39]
(39) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
-
[40]
(40) niakowski, J.; Holender, J. M.; Kantorovich, L. N.; Gillan,M. J. Phys. Rev. B 1996, 53, 957. doi: 10.1103/PhysRevB.53.957
-
[41]
(41) Sanz, J. F.; Márquez, A. J. Phys. Chem. C 2007, 111, 3949. doi: 10.1021/jp0639952
-
[42]
(42) niakowski, J.; Gillan, M. J. Surf. Sci. 1996, 350, 145. doi: 10.1016/0039-6028(95)01252-4
-
[43]
(43) White, J. A.; Bird, D. M.; Payne, M. C.; Stich, I. Phys. Rev. Lett.1994, 73, 1404. doi: 10.1103/PhysRevLett.73.1404
-
[44]
(44) Versluis, L.; Zeigler, T. J. Chem. Phys. 1988, 88, 322. doi: 10.1063/1.454603
-
[45]
(45) von Barth, U.; Hedin, L. J. Phys. C 1972, 5, 1629. doi: 10.1088/0022-3719/5/13/012
-
[46]
(46) Matsuzawa, N.; Seto, J. E.; Dixon, D. A. J. Phys. Chem. A 1997,101, 9391. doi: 10.1021/jp952465v
-
[47]
(47) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
-
[48]
(48) Fernandez, S.; Markovits, A.; Miont, C. J. Phys. Chem. C 2008,112, 14010. doi: 10.1021/jp800708u
-
[49]
(49) Zou, X. J.; Ding, K. N.; Zhang, Y. F.; Li, J. Q. Int. J. Quantum Chem. 2011, 111, 915. doi: 10.1002/qua.22454
-
[50]
(50) Zhu, J.; Jin, H.; Chen,W. J.; Li, Y.; Zhang, Y. F.; Ning, L. X;Huang, X.; Ding, K. N; Chen,W. K. J. Phys. Chem. C 2009,113, 17509. doi: 10.1021/jp906194t
-
[51]
(51) Mazheika, A. S.; Matulis, V. E.; Ivashkevich, O. A. J. Mol. Struct. 2009, 909, 75.
-
[52]
(52) Zeng, Q. S.; Chen,W. K.; Dai,W. X.; Zhang, Y. F.; Li, Y.; Guo,X. Chin. J. Catal. 2010, 31, 423. [曾庆松, 陈文凯, 戴文新,章永凡, 李奕, 郭欣. 催化学报, 2010, 31, 423.]
-
[53]
(53) Lopez, N.; Nørskov, J. K. Surf. Sci. 2002, 515, 175. doi: 10.1016/S0039-6028(02)01873-3
-
[54]
(54) Markovits, A.; Paniagua, J. C.; López, N.; Minot, C.; Illas, F.Phys. Rev. B 2003, 67, 115417. doi: 10.1103/PhyRevB.67.115417
-
[55]
(55) Labat, F.; Baranek, P.; Domain, C.; Minot, C.; Adamo, C.J. Chem. Phys. 2007, 126, 154703. doi: 10.1063/1.2717168
-
[56]
(56) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J.W.,Jr.; Smith, J. V. J. Am. Chem. Soc. 1987, 109, 3639. doi: 10.1021/ja00246a021
-
[57]
(57) Thiên-Nga, L.; Paxon, A. T. Phys. Rev. B 1998, 58, 13233. doi: 10.1103/PhysRevB.58.13233
-
[58]
(58) Yang, Z.;Wu, R.; odman, D.W. Phys. Rev. B 2000, 61,14066. doi: 10.1103/PhysRevB.61.14066
-
[59]
(59) Lai, X.; Clair, T. P. S.; Valden, M.; odman, D.W. Prog. Surf. Sci. 1998, 59, 25. doi: 10.1016/S0079-6816(98)00034-3
-
[60]
(60) Bates, S. P.; Kresse, G.; Gillan, M. J. Surf. Sci. 1997, 385, 386.doi: 10.1016/S0039-6028(97)00265-3
-
[61]
(61) Mattsson, A. E.; Jennison, D. R. Surf. Sci. 2002, 520, L611.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[5]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[6]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[7]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[8]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[9]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[10]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[11]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[12]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[13]
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
-
[14]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[16]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[17]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[18]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[19]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[20]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[1]
Metrics
- PDF Downloads(840)
- Abstract views(3161)
- HTML views(29)