Citation: SHI Wei, HU Jun, NI Zhe-Ming, LI Yuan, LIU Jiao. Influence of Interlayer Water Content on Supermolecular Interaction of Copper-Iron Layered Double Hydroxides[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1869-1876. doi: 10.3866/PKU.WHXB201205212 shu

Influence of Interlayer Water Content on Supermolecular Interaction of Copper-Iron Layered Double Hydroxides

  • Received Date: 20 January 2012
    Available Online: 21 May 2012

  • A periodic interaction model was proposed for the copper-iron layered double hydroxides, Cu3Fe-LDHs-yH2O(y=0-2). Based on density functional theory, the geometry of Cu3Fe-LDHs-yH2O was optimized using the CASTEP program. The distribution of NO3- and H2O in the interlayer and the supermolecular interaction between host and guest was investigated by analyzing the geometric parameters, hydrogen-bonding, charge populations and stepwise hydration energy. Results showed that when NO3- and H2O were inserted into the layers of Cu3Fe-LDHs, there was strong supramolecular interaction between the host layer and the guest, including hydrogen-bonding and electrostatic interaction. Hydrogen-bonding was superior to the electrostatic interaction in the hydration process. The strength of hydrogen bonding was Layer-Anion(L-A) type hydrogen bonding>Anion-Water(A-W) type hydrogen bonding>L-A type hydrogen bonding>Layer-Water(L-W) hydrogen bonding> Water-Water(W-W) type hydrogen bonding. In Cu3Fe-LDHs-yH2O, the interlayer distance decreased slightly and then increased significantly with an increase in the number of interlayer water molecules. The Cu-O octahedral forms were stretched gradually, because the Jahn-Teller effect of Cu2+ increased. The absolute value for the hydration energy decreased gradually with an increase in the number of water molecules. This suggested that the hydration of Cu3Fe-LDHs reached a definite saturation state. The geometry parameters of Cu3Fe-LDHs-1H2O is close to the ideal hexa nal, the metal distortion of layer is the weakest and the stability is the strongest, interlayer distance matchs with the experimental value, so the Cu3Fe-LDHs-1H2O is a stable configuration.

  • 加载中
    1. [1]

      (1) Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173.doi: 10.1016/0920-5861(91)80068-K

    2. [2]

      (2) Duan, X.; Zhang, F. Z. Intercalation and Assembly Chemistry of Inorganic Supramolecular Materials; Science Press: Beijing,2009. [段雪, 张法智. 无机超分子材料的插层组装化学. 北京: 科学出版社, 2009.]

    3. [3]

      (3) Liao, J. Y.; Xie, X. M.; Cheng, S. Y.;Wu, X.; An, X.Petrochemical Technology 2009, 38, 1101. [廖家友, 谢鲜梅,程淑艳, 吴旭, 安霞. 石油化工, 2009, 38, 1101.]

    4. [4]

      (4) Xie, X. M.; An, X.; Yan, K.;Wu, X.; Song, J. L.;Wang, Z. Z.J. Nat. Gas Chem. 2010, 19, 77. doi: 10.1016/S1003-9953(09)60038-4

    5. [5]

      (5) Xie, X. M.; Yan, K.; Hu, Q. X.; Song, J. L.;Wang, Z. Z. Chin. J. Inorg. Chem. 2008, 24, 32. [谢鲜梅, 严凯, 胡秋霞, 宋健玲,王志忠. 无机化学学报, 2008, 24, 32.]

    6. [6]

      (6) Liu, H. B.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Sun, C. B.; Li, X. F.;Wu, H. Y. Mater. Lett. 2010, 64, 1698. doi: 10.1016/j.matlet.2010.04.061

    7. [7]

      (7) Vinod, H. J.; Deepa, K. D.; Vilas, B. P.; Hanumant, B. B.;Radhika, D.W. Catal Commun. 2007, 8, 65. doi: 10.1016/j.catcom.2006.05.030

    8. [8]

      (8) Xie, X. M.; Liu, J. X.; Song, J. L.;Wang, Z. Z. Chin. J. Catal.2003, 24, 569. [谢鲜梅, 刘洁翔, 宋健玲, 王志忠. 无机化学学报, 2003, 24, 569.]

    9. [9]

      (9) Heermann, D.W. Computer Simulation Methods in Theoretical Physics; Springer-Verlag Press: Heidelberg, 1990; pp 387-439.

    10. [10]

      (10) Leach, A. R. Molecular Modelling: Principles and Applications;AddisonWesley Longman Limitted Press: Essex, 2001; pp26-454.

    11. [11]

      (11) Deyse, G. C.; Alexandre, B. R.; Wladmir, F. S.; Sandra, S. X.C.; Alexandre, A. L. J. Phys. Chem. B 2011, 115, 3531. doi: 10.1021/jp110668s

    12. [12]

      (12) Vinuthaa, M.; Howard, D. S.; Zhang, H.; Sean, C. S. J. Phys. Chem. A 2011, 115, 13673. doi: 10.1021/jp2079499

    13. [13]

      (13) Xu, Q.; Ni, Z. M.; Pan, G. X.; Chen, L. T.; Liu, T. Acta Phys. -Chim. Sin. 2008, 24, 601. [胥倩, 倪哲明, 潘国祥, 陈丽涛, 刘婷. 物理化学学报, 2008, 24, 601.] doi: 10.1016/S1872-1508(08)60026-1

    14. [14]

      (14) Yao, P.; Ni, Z. M.; Xu, Q.; Mao, J. H.; Liu, X. M.;Wang, Q. Q.Acta Phys. -Chim. Sin. 2010, 26, 175. [姚萍, 倪哲明, 胥倩, 毛江洪, 刘晓明, 王巧巧. 物理化学学报, 2010, 26, 175.]

    15. [15]

      (15) Xu, Q.; Ni, Z. M.; Mao, J. H. J. Mol. Struct-Theochem 2009,915, 122. doi: 10.1016/j.theochem.2009.08.033

    16. [16]

      (16) Segall, M. D.; Linda, P.; Probert, M.; Pickard, C.; Hasnip, P.;Clark, S.; Payne, M. J. Phys. -Condes. Matter 2002, 14, 2717.doi: 10.1088/0953-8984/14/11/301

    17. [17]

      (17) Ceperley, D. M.; Aider, B. J. Phys. Rev. Lett. 1980, 45, 566. doi: 10.1103/PhysRevLett.45.566

    18. [18]

      (18) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892

    19. [19]

      (19) Kresse, G.; Furthmiiller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    20. [20]

      (20) Scheiner, S. Hydrogen Bonding; Oxford University Press: NewYork, 1997.

    21. [21]

      (21) Jeffrey, G. A. An Introduction to Hydrogen Bond; OxfordUniversity Press: New York, 1997.

    22. [22]

      (22) Desiraju, G.; Steiner, T. The Weak Hydrogen Bond; OxfordUniversity Press: New York, 1999.

    23. [23]

      (23) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    24. [24]

      (24) Pan, D. K.; Zhao, C. D.; Zheng, Z. X. The Structure of Matter;Higher Education Press: Beijing, 1989; pp 329-330. [潘道皑,赵成大, 郑载兴. 物质结构. 北京: 高等教育出版社, 1989:329-330.]

    25. [25]

      (25) Kumar, P. P.; Kalinichev, A. G.; Kirkpatrick, R. J. J. Phys. Chem. C 2007, 111, 13517. doi: 10.1021/jp0732054


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    16. [16]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(673)
  • Abstract views(2931)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return