Citation: LI Hui-Quan, CUI Yu-Min, WU Xing-Cai, HUA Lin, HONG Wen-Shan. Structure and Properties of BiOI/TiO2 (A) Photocatalysts with Different Bi/Ti Molar Ratios[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1985-1991. doi: 10.3866/PKU.WHXB201205161 shu

Structure and Properties of BiOI/TiO2 (A) Photocatalysts with Different Bi/Ti Molar Ratios

  • Received Date: 19 March 2012
    Available Online: 16 May 2012

    Fund Project: 国家自然科学基金(21171091) (21171091)安徽省高校省级自然科学基金(KJ2012A217, KJ2012B136)资助项目 (KJ2012A217, KJ2012B136)

  • BiOI-sensitized nano-anatase (TiO2 (A)) photocatalysts were prepared by a deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL), and UV-Vis diffuse reflectance spectra (UV-Vis DRS). The photocatalytic activities were evaluated by photo-degradation experiments of rhodamine B. With increasing BiOI content, the absorption intensity of BiOI/TiO2 (A) increases in the 370-630 nm region and the absorption band edge redshifts. The UV and visible light photocatalytic activities increase, reaching a maximum when the Bi/Ti molar ratio is 1.7% . The 1.7% BiOI/TiO2 (A) catalyst exhibits much higher visible-light photoactivity than P25, and its UV-light photoactivity is slightly higher than that of P25. The UV and visible light photocatalytic activities of BiOI/TiO2 (A) with similar BiOI content are lower than those of BiOI/P25 catalysts. Compared with TiO2 (A), 1.7% BiOI/TiO2 (A) shows higher UV and visible light photoactivities. This is attributed to the strong absorption in the 370-630 nm region, the redshift of the absorption band edge, and the effective transfer of the photogenerated electrons and holes, which reduces the recombination of electron-hole pairs.

    1. [1]

      (1) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331,746. doi: 10.1126/science.1200448

    2. [2]

      (2) Qiu,W.; Ren, C. J.; ng, M. C.; Hou, Y. Z.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1487. [仇伟, 任成军, 龚茂初,侯云泽, 陈耀强. 物理化学学报, 2011, 27, 1487.] doi: 10.3866/PKU.WHXB20110621

    3. [3]

      (3) Tong, X.; Chen, R.; Chen, T. H. Acta Phys. -Chim. Sin. 2011, 27,1941. [佟欣, 陈睿, 陈铁红. 物理化学学报, 2011, 27,1941.] doi: 10.3866/PKU.WHXB20110836

    4. [4]

      (4) Chen, S. F.; Zhao,W.; Liu,W.; Zhang, S. J. Appl. Surf. Sci.2008, 255, 2478. doi: 10.1016/j.apsusc.2008.07.115

    5. [5]

      (5) Chen, S. F.; Zhang, S. J.; Liu,W.; Zhao,W. J. Hazard. Mater.2008, 155, 320. doi: 10.1016/j.jhazmat.2007.11.063

    6. [6]

      (6) Li, Y. Z.; Kim, S. J. J. Phys. Chem. B 2005, 109 (25), 12309.doi: 10.1021/jp0512917

    7. [7]

      (7) Wu, J. M.; Yao, J. J.; Yang, H. P.; Fan, Y. N.; Xu, B. L. Acta. Chim. Sin. 2010, 68 (14), 1349. [吴俊明, 姚俊杰, 杨汉培, 范以宁, 许波连. 化学学报, 2010, 68 (14), 1349.]

    8. [8]

      (8) Li, Y. Z.; Lee, N. H.; Hwang, D. S.; Song, J. S.; Lee, E. G.;Kim, S. J. Langmuir 2004, 20 (25), 10838.

    9. [9]

      (9) Sério, S.; Jorge, M. E. M.; Coutinho, M. L.; Hoffmann, S. V.;Limao-Vieira, P.; Nunes, Y. Chem. Phys. Lett. 2011, 508, 71.doi: 10.1016/j.cplett.2011.04.002

    10. [10]

      (10) Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M.J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741

    11. [11]

      (11) Morikawa, T.; Ohwaki, T.; Suzuki, K. I.; Shinya, M.;Tero-Kubota, S. Appl. Catal. B: Environ. 2008, 83, 56. doi: 10.1016/j.apcatb.2008.01.034

    12. [12]

      (12) Mitoraj, D.; Kisch, H. Angew. Chem. Int. Edit. 2008, 47, 9975.doi: 10.1002/anie.200800304

    13. [13]

      (13) Li, G. S.; Zhang, D. Q.; Yu, J. C. Environ. Sci. Technol. 2009,43, 7079. doi: 10.1021/es9011993

    14. [14]

      (14) Li, L.; Rohrer, G. S.; Salvador, P. A. J. Am. Ceram. Soc. 2012,95, 1414. doi: 10.1111/j.1551-2916.2012.05076.x

    15. [15]

      (15) Zyoud, A. H.; Zaatar, N.; Saadeddin, I.; Ali, C.; Park, D.;Campet, G.; Hilal, H. S. J. Hazard. Mater. 2010, 173, 318. doi: 10.1016/j.jhazmat.2009.08.093

    16. [16]

      (16) Xia, J. X.; Yin, S.; Li, H. M.; Xu, H.; Xua, L.; Zhang, Q.Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 387,23. doi: 10.1016/j.colsurfa.2011.07.023

    17. [17]

      (17) Li, Y. Y.;Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. J. Mol. Catal. A: Chem. 2011, 334, 116. doi: 10.1016/j.molcata.2010.11.005

    18. [18]

      (18) Wang, Y. N.; Deng, K. J.; Zhang, L. Z. J. Phys. Chem. C 2011,115, 14300 doi: 10.1021/jp2042069

    19. [19]

      (19) Zhang, X.; Zhang, L. Z.; Xie, T. F.;Wang, D. J. J. Phys. Chem. C 2009, 113, 7371. doi: 10.1021/jp900812d

    20. [20]

      (20) Galceran, M.; Pujol, M. C.; Zaldo, C.; Díaz, F.; Aguiló, M.J. Phys. Chem. C 2009, 113, 15497. doi: 10.1021/jp901109a

    21. [21]

      (21) Huang, G. L.; Zhu, Y. F. J. Phys. Chem. C 2007, 111, 11952.doi: 10.1021/jp071987v

    22. [22]

      (22) Hua, X.; Zhang, L. Z. J. Phys. Chem. C 2009, 113, 1785.

    23. [23]

      (23) Bakardjieva, S.; Subrta, J.; Štengla, V.; Dianez, M. J.; Sayagues,M. J. Appl. Catal. B: Environ. 2005, 58, 193.

    24. [24]

      (24) Chen, C. C.; Zhao,W.; Li, J. Y.; Zhao, J. C. Environ. Sci. Technol. 2002, 36, 3604. doi: 10.1021/es0205434

    25. [25]

      (25) Cao, J.; Xu, B. Y.; Lin, H. L.; Luo, B. D.; Chen, S. F. Chem. Eng. J. 2012, 185/186, 91.

    26. [26]

      (26) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.200800940

    27. [27]

      (27) Li, Y. Y.;Wang, J. S.; Liu, B.; Dang, L. Y.; Yao, H. C.; Li, Z. J.Chem. Phys. Lett. 2011, 508, 102. doi: 10.1016/j.cplett.2011.04.019

    28. [28]

      (28) Robel, I.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2007, 129,4136. doi: 10.1021/ja070099a

    29. [29]

      (29) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V.J. Am. Chem. Soc. 2008, 130, 4007. doi: 10.1021/ja0782706

    30. [30]

      (30) Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Yu, J. C.; Ho,W. K.J. Phys. Chem. B 2003, 107 (50), 13871. doi: 10.1021/jp036158y

    31. [31]

      (31) Li, X. Z.; Li, F. B.; Yang, C. L.; Ge,W. K. J. Photochem. Photobiol. A 2001, 141 (2-3), 209. doi: 10.1016/S1010-6030(01)00446-4

    32. [32]

      (32) Jing, L. Q.; Qu, Y. C.;Wang, B. Q.; Li, S. D.; Jiang, B. J.;Yang,L. B.; Fu,W.; Fu, H. G.; Sun, J. Z. Sol. Energy Mat. Sol. Cells2006, 90, 1773. doi: 10.1016/j.solmat.2005.11.007

    33. [33]

      (33) Baiju, K. V.; Zachariah, A.; Shukla, S.; Biju, S.; Reddy, M. L. P.;Warrier, K. G. K. Catal. Lett. 2009, 130, 130. doi: 10.1007/s10562-008-9798-5


    1. [1]

      (1) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331,746. doi: 10.1126/science.1200448

    2. [2]

      (2) Qiu,W.; Ren, C. J.; ng, M. C.; Hou, Y. Z.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1487. [仇伟, 任成军, 龚茂初,侯云泽, 陈耀强. 物理化学学报, 2011, 27, 1487.] doi: 10.3866/PKU.WHXB20110621

    3. [3]

      (3) Tong, X.; Chen, R.; Chen, T. H. Acta Phys. -Chim. Sin. 2011, 27,1941. [佟欣, 陈睿, 陈铁红. 物理化学学报, 2011, 27,1941.] doi: 10.3866/PKU.WHXB20110836

    4. [4]

      (4) Chen, S. F.; Zhao,W.; Liu,W.; Zhang, S. J. Appl. Surf. Sci.2008, 255, 2478. doi: 10.1016/j.apsusc.2008.07.115

    5. [5]

      (5) Chen, S. F.; Zhang, S. J.; Liu,W.; Zhao,W. J. Hazard. Mater.2008, 155, 320. doi: 10.1016/j.jhazmat.2007.11.063

    6. [6]

      (6) Li, Y. Z.; Kim, S. J. J. Phys. Chem. B 2005, 109 (25), 12309.doi: 10.1021/jp0512917

    7. [7]

      (7) Wu, J. M.; Yao, J. J.; Yang, H. P.; Fan, Y. N.; Xu, B. L. Acta. Chim. Sin. 2010, 68 (14), 1349. [吴俊明, 姚俊杰, 杨汉培, 范以宁, 许波连. 化学学报, 2010, 68 (14), 1349.]

    8. [8]

      (8) Li, Y. Z.; Lee, N. H.; Hwang, D. S.; Song, J. S.; Lee, E. G.;Kim, S. J. Langmuir 2004, 20 (25), 10838.

    9. [9]

      (9) Sério, S.; Jorge, M. E. M.; Coutinho, M. L.; Hoffmann, S. V.;Limao-Vieira, P.; Nunes, Y. Chem. Phys. Lett. 2011, 508, 71.doi: 10.1016/j.cplett.2011.04.002

    10. [10]

      (10) Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M.J. Am. Chem. Soc. 2008, 130, 1124. doi: 10.1021/ja0777741

    11. [11]

      (11) Morikawa, T.; Ohwaki, T.; Suzuki, K. I.; Shinya, M.;Tero-Kubota, S. Appl. Catal. B: Environ. 2008, 83, 56. doi: 10.1016/j.apcatb.2008.01.034

    12. [12]

      (12) Mitoraj, D.; Kisch, H. Angew. Chem. Int. Edit. 2008, 47, 9975.doi: 10.1002/anie.200800304

    13. [13]

      (13) Li, G. S.; Zhang, D. Q.; Yu, J. C. Environ. Sci. Technol. 2009,43, 7079. doi: 10.1021/es9011993

    14. [14]

      (14) Li, L.; Rohrer, G. S.; Salvador, P. A. J. Am. Ceram. Soc. 2012,95, 1414. doi: 10.1111/j.1551-2916.2012.05076.x

    15. [15]

      (15) Zyoud, A. H.; Zaatar, N.; Saadeddin, I.; Ali, C.; Park, D.;Campet, G.; Hilal, H. S. J. Hazard. Mater. 2010, 173, 318. doi: 10.1016/j.jhazmat.2009.08.093

    16. [16]

      (16) Xia, J. X.; Yin, S.; Li, H. M.; Xu, H.; Xua, L.; Zhang, Q.Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 387,23. doi: 10.1016/j.colsurfa.2011.07.023

    17. [17]

      (17) Li, Y. Y.;Wang, J. S.; Yao, H. C.; Dang, L. Y.; Li, Z. J. J. Mol. Catal. A: Chem. 2011, 334, 116. doi: 10.1016/j.molcata.2010.11.005

    18. [18]

      (18) Wang, Y. N.; Deng, K. J.; Zhang, L. Z. J. Phys. Chem. C 2011,115, 14300 doi: 10.1021/jp2042069

    19. [19]

      (19) Zhang, X.; Zhang, L. Z.; Xie, T. F.;Wang, D. J. J. Phys. Chem. C 2009, 113, 7371. doi: 10.1021/jp900812d

    20. [20]

      (20) Galceran, M.; Pujol, M. C.; Zaldo, C.; Díaz, F.; Aguiló, M.J. Phys. Chem. C 2009, 113, 15497. doi: 10.1021/jp901109a

    21. [21]

      (21) Huang, G. L.; Zhu, Y. F. J. Phys. Chem. C 2007, 111, 11952.doi: 10.1021/jp071987v

    22. [22]

      (22) Hua, X.; Zhang, L. Z. J. Phys. Chem. C 2009, 113, 1785.

    23. [23]

      (23) Bakardjieva, S.; Subrta, J.; Štengla, V.; Dianez, M. J.; Sayagues,M. J. Appl. Catal. B: Environ. 2005, 58, 193.

    24. [24]

      (24) Chen, C. C.; Zhao,W.; Li, J. Y.; Zhao, J. C. Environ. Sci. Technol. 2002, 36, 3604. doi: 10.1021/es0205434

    25. [25]

      (25) Cao, J.; Xu, B. Y.; Lin, H. L.; Luo, B. D.; Chen, S. F. Chem. Eng. J. 2012, 185/186, 91.

    26. [26]

      (26) Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604. doi: 10.1002/adfm.200800940

    27. [27]

      (27) Li, Y. Y.;Wang, J. S.; Liu, B.; Dang, L. Y.; Yao, H. C.; Li, Z. J.Chem. Phys. Lett. 2011, 508, 102. doi: 10.1016/j.cplett.2011.04.019

    28. [28]

      (28) Robel, I.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2007, 129,4136. doi: 10.1021/ja070099a

    29. [29]

      (29) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V.J. Am. Chem. Soc. 2008, 130, 4007. doi: 10.1021/ja0782706

    30. [30]

      (30) Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Yu, J. C.; Ho,W. K.J. Phys. Chem. B 2003, 107 (50), 13871. doi: 10.1021/jp036158y

    31. [31]

      (31) Li, X. Z.; Li, F. B.; Yang, C. L.; Ge,W. K. J. Photochem. Photobiol. A 2001, 141 (2-3), 209. doi: 10.1016/S1010-6030(01)00446-4

    32. [32]

      (32) Jing, L. Q.; Qu, Y. C.;Wang, B. Q.; Li, S. D.; Jiang, B. J.;Yang,L. B.; Fu,W.; Fu, H. G.; Sun, J. Z. Sol. Energy Mat. Sol. Cells2006, 90, 1773. doi: 10.1016/j.solmat.2005.11.007

    33. [33]

      (33) Baiju, K. V.; Zachariah, A.; Shukla, S.; Biju, S.; Reddy, M. L. P.;Warrier, K. G. K. Catal. Lett. 2009, 130, 130. doi: 10.1007/s10562-008-9798-5


  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(799)
  • Abstract views(2869)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return