Citation: LI Jie-Bin, XU You-Long, DU Xian-Feng, SUN Xiao-Fei, XIONG Li-Long. Improved Electrochemical Stability of Zn-Doped LiNi1/3Co1/3Mn1/3O2 Cathode Materials[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1899-1905. doi: 10.3866/PKU.WHXB201205152
-
Highly stable Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05) cathode materials doped with Zn are synthesized by solid-state reactions with co-precipitated precursors. Cyclic voltammetry (CV) curves reveal that the potential difference between oxidation and reduction decreases to 0.09 V, and from electrochemical impedance spectra (EIS) curves, the impedance of LiNi1/3Co1/3Mn1/3O2 cathode materials is reduced from 266 to 102 Ω. The diffusion coefficients of Li+ ions in intercalation processes increase from 1.20×10-11 to 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2 is stable at 0.3C (constant charge/discharge) at a high cut-off potential of 4.6 V vs Li/Li+. It has a second discharge capacity of 176.2 mAh·g-1 at 0.3C and 142 mAh·g-1 at 3C, and keep almost no decay after 100 cycles at room temperature. Furthermore, its average capacity loss per cycle at 55 °C is 0.20%, which is lower compared with 0.54% for LiNi1/3Co1/3Mn1/3O2 and 0.38% for Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2 after 100 cycles. The improved electrochemical stability of Zn-doped LiNi1/3Co1/3Mn1/3O2 is attributed to the reduced electrode polarization and impedance values, and an increased Li+ ion diffusion coefficient.
-
-
[1]
(1) Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 7, 642.
-
[2]
(2) Hwang, B. J.; Tsai, Y.W.; Carlier, D.; Ceder, G. Chem. Mater.2003, 15, 3676. doi: 10.1021/cm030299v
-
[3]
(3) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Electrochim. Acta 2002, 48, 145. doi: 10.1016/S0013-4686(02)00593-5
-
[4]
(4) Wu, F.;Wang, M.; Su, Y. F.; Chen, S. Acta Phys. -Chim. Sin.2009, 25, 629. [吴峰, 王萌, 苏岳峰, 陈实. 物理化学学报, 2009, 25, 629.] doi: 10.3866/PKU.WHXB20090411
-
[5]
(5) Tu, J. P.;Wu, H. M.; Chen, X. T.; Yuan, Y. F.; Li, Y.; Zhao, X.B.; Cao, G. S. J. Power Sources 2006, 159, 291. doi: 10.1016/j.jpowsour.2006.04.032
-
[6]
(6) Chen, J.;Wang, S.; Whittingham, M. S. J. Power Sources 2007,174, 442. doi: 10.1016/j.jpowsour.2007.06.189
-
[7]
(7) Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2006, 159, 263. doi: 10.1016/j.jpowsour.2006.04.134
-
[8]
(8) Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T.J. Power Sources 2003, 119, 644. doi: 10.1016/S0378-7753(03)00194-0
-
[9]
(9) Yoon,W. S.; Grey, C. P.; Balasubramanian, M.; Yang, X. Q.;Fischer, D. A.; McBreen, J. Electrochem. Solid State Lett. 2004,7, A53.
-
[10]
(10) Kim, J. M.; Chung, H. T. Electrochim. Acta 2004, 49, 937. doi: 10.1016/j.electacta.2003.10.005
-
[11]
(11) Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. J. Electrochem. Soc. 2004, 151, A1324.
-
[12]
(12) Yabuuchi, N.; Ohzuku, T. J. Power Sources 2003, 119, 171. doi: 10.1016/S0378-7753(03)00173-3
-
[13]
(13) Chebiam, R. V.; Prado, F.; Manthiram, A. Chem. Mater. 2001,13, 2951. doi: 10.1021/cm0102537
-
[14]
(14) Kim, H. S.; Kong, M.; Kim, K.; Kim, I. J.; Gu, H. B. J. Power Sources 2007, 171, 917. doi: 10.1016/j.jpowsour.2007.06.028
-
[15]
(15) Na, S. H.; Kim, H. S.; Moon, S. I. Solid State Ionics 2005, 176,313. doi: 10.1016/j.ssi.2004.08.016
-
[16]
(16) Sun, Y. K.; Lee, Y. S.; Yoshio, M.; Amine, K. Electrochem. Solid State Lett. 2002, 5, L1.
-
[17]
(17) Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang,Y. I.; Huang, B. Nature 1998, 392, 694. doi: 10.1038/33647
-
[18]
(18) Zou, M. J.; Yoshio, M.; pukumar, S.; Yamaki, J. Chem. Mater. 2003, 15, 4699. doi: 10.1021/cm0347032
-
[19]
(19) Chen, Y. H.; Chen, R. Z.; Tang, Z. Y.;Wang, L. J. Alloy. Compd.2009, 476, 539. doi: 10.1016/j.jallcom.2008.09.055
-
[20]
(20) Ren, H. B.; Li, X.; Peng, Z. H. Electrochim. Acta 2011, 56,7088. doi: 10.1016/j.electacta.2011.05.104
-
[21]
(21) Milewska, A.; Molenda, M.; Mokenda, J. Solid State Ionics2011, 192, 313. doi: 10.1016/j.ssi.2010.11.026
-
[22]
(22) Holleman, A. F.;Wiberg, E.;Wiberg, N. Lehrbuch der Anorganischen Chemie; Gruyter: Berlin, 1995.
-
[23]
(23) Fey, G. T. K.; Chen, J. G.; Subramanian, V.; Osaka, T. J. Power Sources 2002, 112, 384. doi: 10.1016/S0378-7753(02)00400-7
-
[24]
(24) Li, J. B.; Xu, Y. L.; Xiong, L. L.;Wang, J. P. Acta Phys. -Chim. Sin. 2011, 27, 2593. [李节宾, 徐友龙, 熊礼龙, 王景平. 物理化学学报, 2011, 27, 2593.] doi: 10.3866/PKU.WHXB20111104
-
[25]
(25) Jouanneau, S.; Eberman, K.W.; Krause, L. J.; Dahn, J. R.J. Electrochem. Soc. 2003, 150, A1637.
-
[26]
(26) Kim, J. H.; Yoon, C. S.; Sun, Y. K. J. Electrochem. Soc. 2003,150, A538.
-
[27]
(27) Pouillerie, C.; Perton, F.; Biensan, P.; Peres, J. P.; Broussely, M.;Delmas, C. J. Power Sources 2001, 96, 293. doi: 10.1016/S0378-7753(00)00653-4
-
[28]
(28) Liu, L.; Sun, K. N.; Zhang, N. Q.; Yang, T. Y. J. Solid State Electrochem. 2009, 13, 1381. doi: 10.1007/s10008-008-0695-z
-
[29]
(29) Xia, H.; Lu, L.; Lai, M. O. Electrochim. Acta 2009, 54, 5986.doi: 10.1016/j.electacta.2009.02.071
-
[30]
(30) Xiong, L. L.; Xu, Y. L.; Zhang, C.; Zhang, Z.W.; Li, J. B.J. Solid State Electrochem. 2011, 15, 1263. doi: 10.1007/s10008-010-1195-5
-
[31]
(31) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.;Wiley: New York, 2001.
-
[32]
(32) Jiao, L. F.; Zhang, M.; Yuan, H. T.; Zhao, M.; Guo, H.;Wang,W.; Zhou, X. D.;Wang, Y. M. J. Power Sources 2007, 167, 178.doi: 10.1016/j.jpowsour.2007.01.070
-
[33]
(33) Ghosh, P.; Mahanty, S.; Basu, R. N. Electrochim. Acta 2009, 54,1654. doi: 10.1016/j.electacta.2008.09.050
-
[34]
(34) Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010,10, 4123. doi: 10.1021/nl1023595
-
[35]
(35) Hwang, B. J.; Santhanam, R.; Chen, C. H. J. Power Sources2003, 114, 244. doi: 10.1016/S0378-7753(02)00584-0
-
[36]
(36) Kyu-Hang, L.; Nam-In, C.; Eui-Jung, Y.; Nam, H. G. Appl. Surf. Sci. 2011, 256, 4241.
-
[37]
(37) Katsumata, T.; Matsui, Y.; Inaguma, Y.; Itoh, M. Solid State Ionics 1996, 86 (8), 165.
-
[38]
(38) Wu, F.;Wang, M.; Su, Y. F.; Bao, L. Y.; Chen, S. Electrochim. Acta 2009, 54, 6803. doi: 10.1016/j.electacta.2009.06.075
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[3]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[4]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[5]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[10]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[11]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[12]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[13]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[14]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[15]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[16]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[17]
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
-
[18]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[19]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(845)
- Abstract views(2334)
- HTML views(112)