Citation: BI Dong-Qin, XU Yi-Ming. Influence of Iron Oxide Doping on the Photocatalytic Degradation of Organic Dye X3B over Tungsten Oxide[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1777-1782. doi: 10.3866/PKU.WHXB201205113
-
Development of a highly active visible-light-driven photocatalyst is a challenge for chemical use of solar energy. In this work, WO3 was simply mixed with Fe2O3, and used thereafter for the photocatalytic degradation of organic dye X3B in the presence of H2O2. It was observed that the composite activity was greatly influenced by the catalyst sintering temperature, and by Fe2O3 content in the mixed oxide. The optimum sintering temperature and Fe2O3 loading were 400 ° C and 1.0% (w), respectively. Through a spin trapping electron paramagetic spectroscopy, it was found that the composite produced a significantly larger amount of hydroxyl radicals, in relative to Fe2O3 and WO3. It is proposed that the observed synergistic effect between Fe2O3 and WO3 is due to the charge transfer between the two oxides, improving the separation of the photogenerated charge carriers, and thus accelerating the photocatalytic degradation of X3B.
-
Keywords:
-
Photocatalysis
, - Tungsten oxide,
- Iron oxide,
- Synergism,
- Organic dye,
- Degradation
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Kabra, K.; Chaudhary, R.; Sawhney, R. L. Ind. Eng. Chem. Res.2004, 43, 7683. doi: 10.1021/ie0498551
-
[3]
(3) Koka, M.; Sahin, M. Int. J. Hydrog. Energy 2002, 27, 363. doi: 10.1016/S0360-3199(01)00133-1
-
[4]
(4) Serrano, B.; Lasa, H. Ind. Eng. Chem. Res.1997, 36, 4705. doi: 10.1021/ie970104r
-
[5]
(5) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K.Renewable and Sustainable Energy Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009
-
[6]
(6) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95,735. doi: 10.1021/cr00035a013
-
[7]
(7) Murakami, Y.; Endo, K.; Ohta, I.; Nosaka, A. Y.; Nosaka, Y.J. Phys. Chem. C 2007, 111, 11339. doi: 10.1021/jp0722049
-
[8]
(8) Kumar, S. G.; Devi, L. G. J. Phys. Chem. A 2011, 115, 13211.doi: 10.1021/jp204364a
-
[9]
(9) Tachikawa, T.; Majima, T. Langmuir 2009, 25, 7791. doi: 10.1021/la900790f
-
[10]
(10) Zhao, Z. G.; Miyauchi, M. Angew. Chem. Int. Edit. 2008, 47,7051. doi: 10.1002/anie.200802207
-
[11]
(11) Santato, C.; Ulmann, M.; Augustynski, J. Adv. Mater. 2001, 13,511. doi: 10.1002/1521-4095(200104)13:7<511:AIDADMA511>3.0.CO;2-W
-
[12]
(12) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J.J. Am. Chem. Soc. 2001, 123, 10639. doi: 10.1021/ja011315x
-
[13]
(13) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128,15714. doi: 10.1021/ja064380l
-
[14]
(14) Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. J. Am. Chem. Soc. 2008, 130, 7780. doi: 10.1021/ja800835q
-
[15]
(15) Kim, J.; Lee, C.W.; Choi,W. Environ. Sci. Technol. 2010, 44,6849. doi: 10.1021/es101981r
-
[16]
(16) Darwent, J. R.; Mills, A. J. Chem. Soc. Faraday Trans. 1982,78, 359. doi: 10.1039/f29827800359
-
[17]
(17) Sclafani, A.; Palmisano, L.; Marci, G.; Venezia, A. M. Sol. Energy Mater. Sol. Cells 1998, 51, 203. doi: 10.1016/S0927-0248(97)00215-8
-
[18]
(18) Arai, T.; Horiguchi, M.; Yanagida, M.; Gunji, T.; Sugihara, H.;Sayama, K. Chem. Commun. 2008, 5565. doi: 10.1039/b811657a
-
[19]
(19) Sun, S.;Wang,W.; Zeng, S.; Shang, M.; Zhang L. J. Harzard. Mater. 2010, 178, 427. doi: 10.1016/j.jhazmat.2010.01.098
-
[20]
(20) He, T.; Yao, J. N. J. Mater. Chem. 2007, 17, 4547. doi: 10.1039/b709380b
-
[21]
(21) Du,W.; Xu, Y.;Wang, Y. Langmuir 2008, 24, 175. doi: 10.1021/la7021165
-
[22]
(22) Wang, Y.; Du,W.; Xu, Y. Langmuir 2009, 25, 2895. doi: 10.1021/la803714m
-
[23]
(23) Bi, D.; Xu, Y. Langmuir 2011, 27, 9359. doi: 10.1021/la2012793
-
[24]
(24) Pope, M. T.; Varga, G. M. Inorg. Chem. 1966, 5, 1249. doi: 10.1021/ic50041a038
-
[25]
(25) Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, S.; Zeng, G.Appl. Catal. B: Environ. 2010, 94, 142. doi: 10.1016/j.apcatb.2009.11.002
-
[26]
(26) Adán, C.; Bahamonde, A.; Fernández-García, M.; Martínez-Arias, A. Appl. Catal. B 2007, 72, 11. doi: 10.1016/j.apcatb.2006.09.018
-
[27]
(27) Sherman, D. M. Geochim. Cosmochim. Acta 2005, 69, 3249.doi: 10.1016/j.gca.2005.01.023
-
[28]
(28) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428. doi: 10.1021/cr050172k
-
[1]
-
-
[1]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[8]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[9]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[10]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[13]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[14]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(916)
- Abstract views(2466)
- HTML views(43)