Citation: ZHANG Jin-Li, HE Zheng-Hua, HAN You, LI Wei, WU Jiang-Jie-Xing, GAN Zhong-Xue, GU Jun-Jie. Nucleation and Growth of Na2CO3 Clusters in Supercritical Water Using Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1691-1700. doi: 10.3866/PKU.WHXB201205032 shu

Nucleation and Growth of Na2CO3 Clusters in Supercritical Water Using Molecular Dynamics Simulation

  • Received Date: 28 March 2012
    Available Online: 3 May 2012

    Fund Project: 国家高技术研究发展计划项目(863) (2011AA05A201) (863) (2011AA05A201) 国家自然科学基金(21106094, 20836005) (21106094, 20836005)国家重点基础研究发展规划项目(973) (2010CB736202)资助 (973) (2010CB736202)

  • The nucleation and growth of Na2CO3 particles in supercritical water were investigated using molecular dynamics simulation. The clustering process of Na2CO3 was studied for 1 ns at a series of state points, across temperature and pressure ranges of 700 to 1100 K and 23 to 30 MPa, respectively. The binding energy and radial distribution function analysis showed that the electrostatic interaction was the main factor affecting the whole Na2CO3 nucleation process. Under supercritical conditions, the electrostatic interaction of water molecules with Na+ and CO32- ions rapidly decreased, allowing Na+ and CO32- ions to readily collide with each other to form small Na2CO3 clusters. During the initial Na2CO3 nucleation process, all the single-ion collisions were complete within 50 ps and the ionic collision rates appeared to be of the order of 1030 cm-3·s-1. Furthermore, the effect of temperature was found to be more important than that of the pressure at the nucleation stage and a higher temperature led to an enhanced collision rate and the formation of more initial Na2CO3 particles. The further growth of the Na2CO3 particles was more dependent on the pressure.

  • 加载中
    1. [1]

      (1) Shaw, R.W.; Brill, T. B.; Clifford, A. A.; Eckert, C. A.; Franck,E. U. Chem. Eng. News 1991, 69, 26.

    2. [2]

      (2) Valeriani, C.; Sanz, E.; Frenkel, D. J. Chem. Phys. 2005, 122,194501. doi: 10.1063/1.1896348

    3. [3]

      (3) Reverchon, E.; Adami, R. J. Supercrit. Fluids 2006, 37, 1. doi: 10.1016/j.supflu.2005.08.003

    4. [4]

      (4) Cansell, F.; Aymonier, C. J. Supercrit. Fluids 2009, 47, 508. doi: 10.1016/j.supflu.2008.10.002

    5. [5]

      (5) Hodes, M.; Marrone, P. A.; Hong, G. T.; Smith, K. A.; Tester, J.W. J. Supercrit. Fluids 2004, 29, 265. doi: 10.1016/S0896-8446(03)00093-7

    6. [6]

      (6) Kritzer, P.; Dinjus, E. Chem. Eng. J. 2001, 83, 207. doi: 10.1016/S1385-8947(00)00255-2

    7. [7]

      (7) Bermejo, M. D.; Martín, A.; Queiroz, J. P. S.; Bielsa, I.; Ríos,V.; Cocero, M. J. Chem. Eng. J. 2010, 158, 431. doi: 10.1016/j.cej.2010.01.013

    8. [8]

      (8) Kim, K.; Son, S. H.; Kim, K. S.; Kim, K.; Kim, Y. C. Chem. Eng. J. 2010, 165, 170. doi: 10.1016/j.cej.2010.09.012

    9. [9]

      (9) Svishchev, I. M.; Zasetsky, A. Y.; Nahtigal, I. G. J. Phys. Chem. C 2008, 112, 20181. doi: 10.1021/jp803705z

    10. [10]

      (10) Nahtigal, I. G.; Svishchev, I. M. J. Supercrit. Fluids 2009, 50,169. doi: 10.1016/j.supflu.2009.05.006

    11. [11]

      (11) Lümmen, N.; Kvamme, B. Phys. Chem. Chem. Phys. 2009, 11,9504.

    12. [12]

      (12) Lümmen, N.; Kvamme, B. J. Phys. Chem. B 2008, 112, 12374.doi: 10.1021/jp710156b

    13. [13]

      (13) Li, Y. L.; Guo, L. J.; Zhang, X. M.; Jin, H.; Lu, Y. J. Int. J. Hydrog. Energy 2010, 35, 3036. doi: 10.1016/j.ijhydene.2009.07.023

    14. [14]

      (14) Jin, H.; Lu, Y. J.; Liao, B.; Guo, L. J.; Zhang, X. M. Int. J. Hydrog. Energy 2010, 35, 7151. doi: 10.1016/j.ijhydene.2010.01.099

    15. [15]

      (15) Xiao, H. Y.; Zhen, Z.; Sun, H. Q.; Cao, X. L.; Li, Z. Q.; Song,X.W.; Cuo, X. H.; Liu, X. H. Acta Phys. -Chim. Sin. 2010, 26,422. [肖红艳, 甄珍, 孙焕泉, 曹绪龙, 李振泉, 宋新旺,崔晓红, 刘新厚. 物理化学学报, 2010, 26, 422.] doi: 10.3866/PKU.WHXB20100216

    16. [16]

      (16) Zhou, J.; Lu, X. H.;Wang, Y. R.; Shi, J. Acta Phys. -Chim. Sin.1999, 15, 1017. [周健, 陆小华, 王延儒, 时钧. 物理化学学报, 1999, 15, 1017.] doi: 10.3866/PKU.WHXB19991112

    17. [17]

      (17) Liao, R. J.; Zhu, M. Z.; Zhou, X.; Yang, L. J.; Yan, J. M.; Sun,C. X. Acta Phys. -Chim. Sin. 2011, 27, 815. [廖瑞金, 朱孟兆,周欣, 杨丽君, 严家明, 孙才新. 物理化学学报, 2011, 27,815.] doi: 10.3866/PKU.WHXB20110341

    18. [18]

      (18) Chen, C.; Li,W. Z. Acta Phys. -Chim. Sin. 2009, 25, 507.[陈聪, 李维仲. 物理化学学报, 2009, 25, 507.] doi: 10.3866/PKU.WHXB20090318

    19. [19]

      (19) Shen, Q. C.; Liang,W. C.; Hu, X. B.; Li, H. R. Acta Phys. - Chim. Sin. 2008, 24, 1169. [沈秋婵, 梁婉春, 胡兴邦, 李浩然.物理化学学报, 2008, 24, 1169.] doi: 10.3866/PKU.WHXB20080709

    20. [20]

      (20) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon: Oxford, 1987.

    21. [21]

      (21) Materials Studio Overview. http://accelrys.com/products/materials-studio/ (accessed May 02, 2012)

    22. [22]

      (22) Sun, H. J. Phys. Chem. B 1998, 102, 7338. doi: 10.1021/jp980939v

    23. [23]

      (23) Sun, H. Macromolecules 1995, 28, 701. doi: 10.1021/ma00107a006

    24. [24]

      (24) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford University Press: Oxford, 1989.

    25. [25]

      (25) Frenkel, D.; Smit, B. Understanding Molecular Simulations: from Al rithms to Applications; Academic Press: San Die ,1996.

    26. [26]

      (26) Berendsen, H. J.; Postma, J. P. J. Chem. Phys. 1984, 18, 3684.

    27. [27]

      (27) Hoover,W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695

    28. [28]

      (28) Hoffmann, K. H.; Schreiber, M. Computational Physics 1996,268.

    29. [29]

      (29) Anderson, H. C. J. Chem. Phys. 1980, 72, 2384.

    30. [30]

      (30) Ewald, P. P. Annales de Physique. 1921, 64, 253.

    31. [31]

      (31) Sun,W.; Huang, S. Y.;Wang, C.W.; Chi, R. A. J. Huazhong Univ. of Sci. & Tech. 2008, 36, 103. [孙炜, 黄素逸, 王存文, 池汝安. 华中科技大学学报, 2008, 36, 103.]

    32. [32]

      (32) Becker, R.; Döring,W. Annales de Physique. 1935, 24, 719.

    33. [33]

      (33) Volmer, M.;Weber, A. Z. Z. Phys. Chem. 1926, 119, 277.

    34. [34]

      (34) Debenedetti, P. G. Metastable Liquids: Concept and Principles;Princeton Press: NJ, 1996.

    35. [35]

      (35) Stillinger, F. H. J. Chem. Phys. 1963, 38, 1486. doi: 10.1063/1.1776907

    36. [36]

      (36) Yasuoka, K.; Matsumoto, M. J. Chem. Phys. 1998, 109, 8451.doi: 10.1063/1.477509

    37. [37]

      (37) Rozas, R.; Kraska, T. J. Phys. Chem. C 2007, 111, 15784. doi: 10.1021/jp073713d

    38. [38]

      (38) Lümmen, N.; Kvamme, B. J. Chem. Phys. 2010, 132, 014702.doi: 10.1063/1.3270158

    39. [39]

      (39) Guo, G. J.; Zhang, Y. G.; Li, M. J. Chem. Phys. 2008, 128,194504. doi: 10.1063/1.2919558

    40. [40]

      (40) Wernet, P.; Testemale, D.; Hazemann, J. L.; Ar ud, R.J. Chem. Phys. 2005, 123, 154503. doi: 10.1063/1.2064867

    41. [41]

      (41) Skarmoutsos, I.; Guardia, E. J. Chem. Phys. 2010, 132, 074502.doi: 10.1063/1.3305326

    42. [42]

      (42) Kalinichev, A. G.; Bass, J. D. J. Phys. Chem. A 1997, 101, 9720.doi: 10.1021/jp971218j

    43. [43]

      (43) Skarmoutsos, I.; Samios, J. J. Phys. Chem. B 2006, 110, 21931.doi: 10.1021/jp060955p

    44. [44]

      (44) Römer, F.; Kraska, T. J. Supercrit. Fluids 2010, 55, 769. doi: 10.1016/j.supflu.2010.08.010

    45. [45]

      (45) Nahtigal, I. G.; Zasetsky, A. Y.; Svishchev, I. M. J. Phys. Chem. B 2008, 112, 7537. doi: 10.1021/jp709688g

    46. [46]

      (46) Römer, F.; Kraska, T. J. Chem. Phys. 2007, 127, 234509. doi: 10.1063/1.2805063

    47. [47]

      (47) Sue, K.; Kawasaki, S.; Suzuki, M.; Hakuta, Y.; Hayashi, H.;Arai, K.; Takebayashi, Y.; Yoda, S.; Furuya, T. Chem. Eng. J.2011, 166, 947. doi: 10.1016/j.cej.2010.11.080


  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    17. [17]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    18. [18]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    19. [19]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    20. [20]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

Metrics
  • PDF Downloads(779)
  • Abstract views(2248)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return