Citation: ZHOU Xin-Wen, GAN Ya-Li, SUN Shi-Gang. Studies of Oxidation Processes of Methanol on Hollow CoPt Nanospheres and In situ Electrochemical Fourier Transform Infrared Spectroscopy[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201205031
-
Hollow CoPt nanospheres were synthesized by chemical reduction and galvanic displacement reactions. The catalyst showed od electrocatalytic activity for methanol oxidation. The results of transmission electron microscopy (TEM), energy dispersive spectromenter (EDS), and electrochemical cyclic voltammograms indicated that, in the process of electrochemical experiments carried in 0.1 mol·L-1 H2SO4 and 0.1 mol·L-1CH3OH, hollow CoPt nanospheres were dealloying, which induced the dissolution of elemental Co from the surface of the catalyst. After the dealloying process, more Pt active sites were exposed on the surface of the catalyst and the catalyst showed better catalytic activity, as well as enhanced structural stability. The electrooxidation of methanol on the hollow CoPt nanospheres was studied on the molecular level using in situ electrochemical Fourier transform infrared (FTIR) spectroscopy. The toxic intermediate CO observed on the CoPt nanorods displayed abnormal infrared effects (AIREs). The FTIR results were similar to those obtained in an earlier experiment on the hollow CoPt nanospheres using CO as a probe molecule. All the results suggested that the dealloying method would be a useful technique for regulating the composition and performance of the catalyst. In situ electrochemical FTIR was highlighted as a potential method for studying the oxidation processes of organic molecules. It is envisaged that these methods will be widely used in the field of fuel cell research.
-
-
[1]
(1) Hou, M.; Yi, B. L. J. Electrochem. 2012, 18 (1), 1. [侯明,衣宝廉. 电化学, 2012, 18 (1), 1.]
-
[2]
(2) Sun, Y. B.; Zhuang, L.; Lu, J. T.; Hong, X. L.; Liu, P. F. J. Am. Chem. Soc. 2007, 129, 15465. doi: 10.1021/ja076177b
-
[3]
(3) Anderson, A. B.; Grantscharora, E.; Seong, S. J. Electrochem. Soc. 1996, 43 (6), 2075.
-
[4]
(4) Nakagawa, N.; Kaneda, Y.;Wagatsuma. M.; Tsujiguchi, T.J. Power Sources 2012, 199, 103. doi: 10.1016/j.jpowsour.2011.10.057
-
[5]
(5) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science2007, 316, 762.
-
[6]
(6) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Sun, S. G. J. Am. Chem. Soc.2010, 132, 7580. doi: 10.1021/ja102177r
-
[7]
(7) Liu, B.; Liao, S. J.; Liang, Z. X. Prog. Chem. 2011, 23 (5),852. [刘宾, 廖世军, 梁振兴. 化学进展, 2011, 23 (5), 852.]
-
[8]
(8) Ataee-Esfahani, H.; Nemoto, Y.;Wang, L.; Yamauchi, Y. Chem. Commun. 2011, 47 (13), 3885. doi: 10.1039/c0cc05233g
-
[9]
(9) Kua, J.; ddard,W. A. J. Am. Chem. Soc. 1999, 121, 10928.doi: 10.1021/ja9844074
-
[10]
(10) Chen, Z.W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J.Energ. Environ. Sci. 2011, 4 (9), 3167. doi: 10.1039/c0ee00558d
-
[11]
(11) Luo, B. M.; Yan, X. B.; Xu, S.; Xue, Q. J. Electrochim. Acta2012, 59 (1), 429.
-
[12]
(12) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.;Bai, C. L. Angew. Chem. Int. Edit. 2004, 43, 1540. doi: 10.1002/anie.200352956
-
[13]
(13) Ge, J.; Xing,W.; Xue, X.; Liu, C.; Lu, T.; Liao, J. J. Phys. Chem. C 2007, 111, 17305. doi: 10.1021/jp073666p
-
[14]
(14) Chen, G.; Xia, D.; Nie, Z.;Wang, Z.;Wang, L.; Zhang, L.;Zhang, J. Chem. Mater. 2007, 19, 1840. doi: 10.1021/cm062336z
-
[15]
(15) Zhou, X.W.; Zhang, R. H.; Zhou, Z. Y.; Sun, S. G. J. Power Sources 2011, 196, 5844. doi: 10.1016/j.jpowsour.2011.02.088
-
[16]
(16) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, P. F.; Deng,X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin.2010, 26 (9), 2337. [颜亮亮, 姜庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26 (9), 2337.] doi: 10.3866/PKU.WHXB20100835
-
[17]
(17) Minch, R.; Es-Souni, M. Chem. Commun. 2011, 47 (22), 6284.doi: 10.1039/c1cc11398d
-
[18]
(18) Chen, D. J.; Zhou, Z. Y.;Wang. Q.; Xiang, D. M.; Tian, N.; Sun,S. G. Chem. Commun. 2010, 46 (24), 4252. doi: 10.1039/c002964e
-
[19]
(19) Yu, X. F.;Wang, D. S.; Peng, Q.; Li, Y. D. Chem. Commun.2011, 47 (28), 8094. doi: 10.1039/c1cc12416a
-
[20]
(20) Zhou, X.W.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. J. Nanosci. Nanotech. 2009, 9 (4), 2392. doi: 10.1166/jnn.2009.SE34
-
[21]
(21) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney,M. F.; Nilsson, A. Nat. Chem. 2010, 2 (6), 454. doi: 10.1038/nchem.623
-
[22]
(22) Chen,W.; Sun, S. G.; Si, D.; Chen, S. P. Acta Phys. -Chim. Sin.2003, 19 (5), 441. [陈卫, 孙世刚, 司迪, 陈声培. 物理化学学报, 2003, 19 (5), 441.] doi: 10.3866/PKU.WHXB20030513
-
[23]
(23) Li, J. T.; Chen, Q. S.; Sun, S. G. Electrochim. Acta 2007, 52,5725. doi: 10.1016/j.electacta.2006.12.082
-
[24]
(24) Tkach, I.; Panchenko, A.; Kaz, T.; gel, V.; Friedrich, K. A.;Roduner, E. Phys. Chem. Chem. Phys. 2004, 6, 5419.
-
[1]
-
-
[1]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, doi: 10.3866/PKU.DXHX202308020
-
[2]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202311069
-
[3]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230293
-
[4]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, doi: 10.3866/PKU.DXHX202309030
-
[5]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, doi: 10.3866/PKU.DXHX202401009
-
[6]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230447
-
[7]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, doi: 10.3866/PKU.DXHX202310109
-
[8]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, doi: 10.3866/PKU.DXHX202310039
-
[9]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, doi: 10.3866/PKU.DXHX202312086
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230350
-
[11]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407005
-
[12]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, doi: 10.3866/PKU.DXHX202401072
-
[13]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230351
-
[14]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202309005
-
[15]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240028
-
[16]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407002
-
[17]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240115
-
[18]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, doi: 10.12461/PKU.DXHX202404023
-
[19]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240170
-
[20]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, doi: 10.3866/PKU.DXHX202401023
-
[1]
Metrics
- PDF Downloads(1037)
- Abstract views(2062)
- HTML views(10)