Citation: ZHOU Liang-Chun, MENG Xiang-Guang, LI Jian-Mei, HU Wei, LIU Bo, DU Juan. Kinetics and Thermodynamics of Adsorption of Chlorophenols onto β-Cyclodextrin Modified Chitosan[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1615-1622. doi: 10.3866/PKU.WHXB201204282
-
β-Cyclodextrin (β-CD) modified chitosan (CS), β-cyclodextrin-6-chitosan (CS-CD), was prepared and subsequently characterized by Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The CS-CD was used as an adsorbent for the adsorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (DCP), and 2,4,6-tuichlorophenol (TCP) from aqueous solutions. The Langmuir and Freundlich models were applied to describe the adsorption isotherms of the chlorophenols. The adsorption parameters have also been evaluated. The calculated maximum adsorption capacities for 2-CP, DCP, and TCP on CS-CD were 14.51, 50.68, and 74.29 mg·g-1, respectively, indicating that the introduction of the β-CD moiety greatly increased the adsorption efficiency. Kinetic studies showed that the adsorptions were fast, in that all of the adsorption equilibria were reached within one hour, and that the adsorption processes followed a pseudosecond- order kinetic model. The thermodynamic parameters ΔG0, ΔH0, and ΔS0 were also calculated. The negative ΔG0 values indicated that all of the adsorption processes were spontaneous. A possible adsorption mechanism has been provided and discussed. The effects of electrolytes and pH values on adsorption revealed that hydrogen bonding between the chlorophenols and CS-CD dominated the adsorption process, which was further confirmed by FT-IR analysis. The adsorbent could be regenerated by washing with ethanol. Following six cycles of usage and regeneration, the mass and adsorption efficiency of the CS-CD remained at 90% and 82%, respectively. CS, however, showed greater mass loss and efficiency reduction following regeneration.
-
Keywords:
-
Chitosan
, - β-Cyclodextrin,
- Adsorption,
- Chlorophenols,
- Thermodynamics,
- Kinetics
-
-
-
[1]
(1) Moradi, M.; Yamini, Y.; Esrafili, A.; Seidi, S. Talanta 2010, 82,1864. doi: 10.1016/j.talanta.2010.08.002
-
[2]
(2) Hamad, B. K.; Noor, A. M.; Afida, A. R.; Asri, M. N. M.Desalination 2010, 257, 1. doi: 10.1016/j.desal.2010.03.007
-
[3]
(3) Tsutsui, T.; Hayashi, N.; Maizumi, H.; Huff, J.; Barrett, J. C.Mutat. Res-Fund. Mol. M. 1997, 373, 113. doi: 10.1016/S0027-5107(96)00196-0
-
[4]
(4) Dominguez-Vargas, J. R.; Navarro-Rodriguez, J. A.; de Herediaa,J. B.; Cuerda-Correa, E. M. J. Hazard. Mater. 2009, 169, 302.doi: 10.1016/j.jhazmat.2009.03.075
-
[5]
(5) Sampa, M. H. D. O.; Rela, P. R.; Las Casas, A.; Mori, M. N.;Duarte, C. L. Radiat. Phys. Chem. 2004, 71, 459. doi: 10.1016/j.radphyschem.2004.03.023
-
[6]
(6) Jain, S.; Jayaram, R. V. Sep. Sci. Technol. 2007, 42, 2019. doi: 10.1080/15275920701313608
-
[7]
(7) Hu, Q. H.; Qiao, S. Z.; Haghseresht, F.;Wilson, M. A.; Lu, G.Q. Ind. Eng. Chem. Res. 2006, 45, 733. doi: 10.1021/ie050889y
-
[8]
(8) Maugans, C. B.; Akgerman, A. Water Res. 2003, 37, 319. doi: 10.1016/S0043-1354(02)00289-0
-
[9]
(9) Chiou, S. H.;Wu,W. T.; Huang, Y. Y.; Chung, T.W.J. Microencapsul. 2001, 18, 613. doi: 10.1080/02652040010019497
-
[10]
(10) Chiu, S. H.; Chung, T.W.; Giridhar, R.;Wu,W. T. Food Res. Int. 2004, 37, 217. doi: 10.1016/j.foodres.2003.12.001
-
[11]
(11) Milhome, M. A. L.; de Keukeleire, D.; Ribeiro, J. P.; Nascimento,R. F.; Carvalho, T. V.; Queiroz, D. C. Quim. Nova 2009, 32,2122. doi: 10.1590/S0100-40422009000800025
-
[12]
(12) Crini, G.; Badot, P. M. Prog. Polym. Sci. 2008, 33, 399. doi: 10.1016/j.progpolymsci.2007.11.001
-
[13]
(13) Dotto, G. L., Pinto, L. A. A. J. Hazard. Mater. 2011, 187, 164.doi: 10.1016/j.jhazmat.2011.01.016
-
[14]
(14) Guibal, E. Sep. Purif. Technol. 2004, 38, 43. doi: 10.1016/j.seppur.2003.10.004
-
[15]
(15) Zhou, L. M.; Shang, C.; Liu, Z. R. Acta Phys. -Chim. Sin. 2011,27, 677. [周利民, 尚超, 刘峙嵘. 物理化学学报, 2011, 27,677.] doi: 10.3866/PKU.WHXB20110314
-
[16]
(16) Zheng, J. N.; Xie, H. G.; Yu,W. T.; Liu, X. D.; Xie,W. Y.; Zhu,J.; Ma, X. J. Langmuir 2010, 26, 17156. doi: 10.1021/la1030203
-
[17]
(17) Zhang, X. Y.;Wang, Y. T.; Yi, Y. J. Appl. Polym. Sci. 2004, 94,860. doi: 10.1002/app.20759
-
[18]
(18) Prabaharan, M.; Mano, J. F. Carbohyd. Polym. 2006, 63, 153.doi: 10.1016/j.carbpol.2005.08.051
-
[19]
(19) Sharma, A. K.; Mishra, A. K. Int. J. Biol. Macromol. 2010, 47,410. doi: 10.1016/j.ijbiomac.2010.06.012
-
[20]
(20) Hall, L. D.; Yalpani, M. Carbohyd. Res. 1980, 83, C5.
-
[21]
(21) Ozmen, E. Y.; Sezgin, M.; Yilmaz, A.; Yilmaz, M. Bioresource Technol. 2008, 99, 526. doi: 10.1016/j.biortech.2007.01.023
-
[22]
(22) Li, J. M.; Meng, X. G.; Hu, C.W.; Du, J. Bioresource Technol.2009, 100, 1168. doi: 10.1016/j.biortech.2008.09.015
-
[23]
(23) Wang, H.; Fang, Y.; Ding, L. P.; Gao, L. N.; Hu, D. D. Thin Solid Films 2003, 440, 255. doi: 10.1016/S0040-6090(03)00812-5
-
[24]
(24) Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith,F. Anal. Chem. 1956, 28, 350. doi: 10.1021/ac60111a017
-
[25]
(25) Ghiaci, M.; Abbaspur, A.; Kia, R.; Seyedeyn-Azad, F. Sep. Purif. Technol. 2004, 40, 217. doi: 10.1016/j.seppur.2004.03.001
-
[26]
(26) Ma, J.W.;Wang, H.;Wang, F. Y.; Huang, Z. H. Sep. Sci. Technol. 2010, 45, 2329. doi: 10.1080/01496395.2010.504482
-
[27]
(27) Wu, X. B.;Wu, D. C.; Fu, R.W. J. Hazard. Mater. 2007, 147,1028. doi: 10.1016/j.jhazmat.2007.01.139
-
[28]
(28) Chen, C. Y.; Chen, C. C.; Chung, Y. C. Bioresource Technol.2007, 98, 2578. doi: 10.1016/j.biortech.2006.09.009
-
[29]
(29) Alkaram, U. F.; Mukhlis, A. A.; Al-Dujaili, A. H. J. Hazard. Mater. 2009, 169, 324. doi: 10.1016/j.jhazmat.2009.03.153
-
[30]
(30) Ho, Y. S.; McKay, G. Water Res. 2000, 34, 735. doi: 10.1016/S0043-1354(99)00232-8
-
[31]
(31) Feng, Y. J.; Zhang, Z. H.; Gao, P.; Su, H.; Yu, Y. L.; Ren, N. Q.J. Hazard. Mater. 2010, 175, 970. doi: 10.1016/j.jhazmat.2009.10.105
-
[32]
(32) Sheng, G. D.; Shao, D. D.; Ren, X. M.;Wang, X. Q.; Li, J. X.;Chen, Y. X.;Wang, X. K. J. Hazard. Mater. 2010, 178, 505. doi: 10.1016/j.jhazmat.2010.01.110
-
[33]
(33) Pan, J. M.; Zou, X. H.;Wang, X.; Guan,W.; Yan, Y. S.; Han, J.A. Chem. Eng. J. 2010, 162, 910. doi: 10.1016/j.cej.2010.06.039
-
[34]
(34) Liu, Y. J. Chem. Eng. Data 2009, 54, 1981. doi: 10.1021/je800661q
-
[35]
(35) Liu, Q. S.; Zheng, T.;Wang, P.; Jiang, J. P.; Li, N. Chem. Eng. J.2010, 157, 348. doi: 10.1016/j.cej.2009.11.013
-
[36]
(36) Hamdaoui, O.; Naffrechoux, E. J. Hazard. Mater. 2007, 147,401. doi: 10.1016/j.jhazmat.2007.01.023
-
[1]
-
-
[1]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[2]
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
-
[3]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[4]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[5]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[6]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[7]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[8]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[9]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[10]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[11]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[12]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[13]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[14]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[15]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[16]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[18]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[19]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[20]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[1]
Metrics
- PDF Downloads(795)
- Abstract views(3066)
- HTML views(35)