Citation: SHEN Bao-Shou, FENG Wang-Jun, LANG Jun-Wei, WANG Ru-Tao, TAI Zhi-Xin, YAN Xing-Bin. Nitric Acid Modification of Graphene Nanosheets Prepared by Arc- Discharge Method and Their Enhanced Electrochemical Properties[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1726-1732. doi: 10.3866/PKU.WHXB201204261
-
Large-scale synthesis of few-layer graphene nanosheets (GNSs) with high crystallinity and electrical conductivity (1680 S·m-1) is achieved by an arc-discharge method. The GNSs exhibited od morphologies as observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). However, electrochemical testing showed that the performance of the graphene (GNS) electrodes in supercapacitors was poor. To increase the surface active sites for electrochemical reactions and promote the wettability by aqueous electrolyte of the GNSs, a nitric acid treatment was used to chemically modify their surface. The acid treatment introduced more oxygen/nitrogen-containing functional groups onto the GNS surface, and clearly enhanced the hydrophilicity. The nitric-acid-modified GNSs (H-GNSs) showed vastly better electrode performance, with a maximum specific capacitance of 65.5 F·g-1 (about 30 times that of original GNSs) at a current density of 0.5 A·g-1 in 2 mol·L-1 KOH electrolyte. In addition, the H-GNS electrode showed od cycling stability and lifetime after running 2000 cycles. Therefore, H-GNSs may be an attractive candidate as electrode materials for supercapacitors.
-
-
[1]
(1) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. doi: 10.1021/cr020730k
-
[2]
(2) Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539. doi: 10.1149/1.2085829
-
[3]
(3) Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T.Chem. Eur. J. 2009, 15, 5320. doi: 10.1002/chem.200802671
-
[4]
(4) Wu, Z. S.;Wang, D.W.; Ren,W. C.; Zhao, J. P.; Zhou, G. M.;Li, F.; Cheng, H. M. Adv. Funct. Mater. 2010, 20, 3595. doi: 10.1002/adfm.201001054
-
[5]
(5) Lang, J.W.; Kong, L. B.;Wu,W. J.; Luo, Y. C.; Kang, L. Chem. Commun. 2008, 4213.
-
[6]
(6) Li, Y. M.; Van Zijll, M.; Chiang, S.; Pan, N. J. Power Sources2011, 196, 6003. doi: 10.1016/j.jpowsour.2011.02.092
-
[7]
(7) Chang, J. K.; Tsai,W. T. J. Electrochem. Soc. 2005, 152, A2063.
-
[8]
(8) Zhang, H.; Cao, G. P.;Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu,Z. N. Electrochem. Commun. 2008, 10, 1056. doi: 10.1016/j.elecom.2008.05.007
-
[9]
(9) Nam, K.W.; Kim, K. B. J. Electrochem. Soc. 2002, 149, A346.
-
[10]
(10) Lei, Z. B.; Christov, N.; Zhao, X. S. Energy Environ. Sci. 2011,4, 1866. doi: 10.1039/c1ee01094h
-
[11]
(11) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110,132. doi: 10.1021/cr900070d
-
[12]
(12) Zhang, H. X.; Lv, J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano2010, 4, 380. doi: 10.1021/nn901221k
-
[13]
(13) Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B.G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai,R.; Ajayan, P. M. Nano Lett. 2011, 11, 1423. doi: 10.1021/nl200225j
-
[14]
(14) Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.;Wang, C. Y.; Chen,M. M.; Chen, Y. S. J. Phys. Chem. C 2009, 113, 13103. doi: 10.1021/jp902214f
-
[15]
(15) Li, Z. J.; Yang, B. C.; Zhang, S. R.; Zhao, M. X. Appl. Surf. Sci.2011, 258, 3726.
-
[16]
(16) Wang, D.W.; Li, F. Z.;Wu, S.; Ren,W.; Cheng, H. M.Electrochem. Commun. 2009, 11, 1729. doi: 10.1016/j.elecom.2009.06.034
-
[17]
(17) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q
-
[18]
(18) Stoller, M. D.; Park, S.; Zhu, Y.W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y
-
[19]
(19) Liu,W.W.; Yan, X. B.; Lang, J.W.; Xue, Q. J. J. Mater. Chem.2011, 21, 13205. doi: 10.1039/c1jm11930c
-
[20]
(20) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[21]
(21) Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25. doi: 10.1038/nnano.2008.329
-
[22]
(22) Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.;Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.;Rotenberg, E.; Schmid, A. K.;Waldmann, D.;Weber, H. B.;Seyller, T. Nat. Mater. 2009, 8, 203. doi: 10.1038/nmat2382
-
[23]
(23) Sutter, P.W.; Flege, J. I.; Sutter, E. A. Nat. Mater. 2008, 7, 406.doi: 10.1038/nmat2166
-
[24]
(24) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J.H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.doi: 10.1038/nature07719
-
[25]
(25) Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Rader, H. J.;Mullen, K. J. Am. Chem. Soc. 2008, 130, 4216. doi: 10.1021/ja710234t
-
[26]
(26) Subrahmanyam, K. S.; Panchakarla, L. S.; vindaraj, A.; Rao,C. N. R. J. Phys. Chem. C 2009, 113, 4257.
-
[27]
(27) Wu, Z.; Ren,W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.;Yu, B.; Jiang, C.; Cheng, H. ACS Nano 2009, 3, 411. doi: 10.1021/nn900020u
-
[28]
(28) Yan, L.;Wang, Z. Y.; Zhang, H.; Fang, J.; Cao, G. P.; Shi, Z. J.;Wang, B. Y. Journal of Inorganic Materials 2010, 25, 725. doi: 10.3724/SP.J.1077.2010.00725
-
[29]
(29) Yu, D. S.; Dai, L. M. J. Phys. Chem. Lett. 2009, 1, 467.
-
[30]
(30) Du, Q. L.; Zheng, M. B.; Zhang, L. F.;Wang, Y.W.; Chen, J. H.;Xue, L. P.; Dai,W. J.; Ji, G. B.; Cao, J. M. Electrochim. Acta2010, 55, 3897. doi: 10.1016/j.electacta.2010.01.089
-
[31]
(31) Qian, Y.; Lu, S. B.; Gao, F. L. J. Mater. Sci. 2011, 46, 3517. doi: 10.1007/s10853-011-5260-y
-
[32]
(32) Lu, X.J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G.Acta Phys. -Chim. Sin. 2011, 27, 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27, 2333.]doi: 10.3866/PKU.WHXB20111022
-
[33]
(33) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j
-
[34]
(34) Liang, M. H.; Zhi, L. J. J. Mater. Chem. 2009, 19, 5871. doi: 10.1039/b901551e
-
[35]
(35) Lang, J.W.; Yan, X. B.; Yuan, X. Y.; Yang, J.; Xue, Q. J.J. Power Sources 2011, 196, 10472. doi: 10.1016/j.jpowsour.2011.08.017
-
[36]
(36) Shen, B. S.; Ding, J. J.; Yan, X. B.; Feng,W. J.; Li, J.; Xue, Q. J.Appl. Surf. Sci. 2012, 258, 4523. doi: 10.1016/j.apsusc.2012.01.019
-
[37]
(37) Kong, L. B.; Lang, J.W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1194. doi: 10.1016/j.jpowsour.2009.06.016
-
[38]
(38) Wu, Y. P.;Wang, B.; Ma, Y. F.; Huang, Y.; Li, N.; Zhang, F.;Chen, Y. S. Nano Res. 2010, 3, 661. doi: 10.1007/s12274-010-0027-3
-
[39]
(39) Chen, C. M.; Huang, J. Q.; Zhang, Q.; ng,W. Z.; Yang, Q.H.;Wang, M. Z.; Yang, Y. G. Carbon 2012, 50, 659. doi: 10.1016/j.carbon.2011.09.022
-
[40]
(40) Bichat, M. P.; Raymundo-Piñero, E.; Béguin, F. Carbon 2010,48, 4351. doi: 10.1016/j.carbon.2010.07.049
-
[41]
(41) Lufrano, F.; Staiti, P. Energy Fuels 2010, 24, 3313. doi: 10.1021/ef901447y
-
[42]
(42) Wang, J.; Chen, M. M.;Wang, C. Y.;Wang, J. Z.; Zheng, J. M.J. Power Sources 2011, 196, 550. doi: 10.1016/j.jpowsour.2010.07.030
-
[1]
-
-
[1]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[4]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[5]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[6]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[7]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[8]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[9]
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
-
[10]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[13]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[14]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[15]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[16]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[17]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[18]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[19]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[20]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[1]
Metrics
- PDF Downloads(1350)
- Abstract views(3362)
- HTML views(72)