Citation: SHEN Bao-Shou, FENG Wang-Jun, LANG Jun-Wei, WANG Ru-Tao, TAI Zhi-Xin, YAN Xing-Bin. Nitric Acid Modification of Graphene Nanosheets Prepared by Arc- Discharge Method and Their Enhanced Electrochemical Properties[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1726-1732. doi: 10.3866/PKU.WHXB201204261 shu

Nitric Acid Modification of Graphene Nanosheets Prepared by Arc- Discharge Method and Their Enhanced Electrochemical Properties

  • Received Date: 23 February 2012
    Available Online: 26 April 2012

    Fund Project: 项目, 中国博士后科学基金(20100480728) (20100480728)甘肃省青年科技基金计划项目(1107RJYA274)资助 (1107RJYA274)

  • Large-scale synthesis of few-layer graphene nanosheets (GNSs) with high crystallinity and electrical conductivity (1680 S·m-1) is achieved by an arc-discharge method. The GNSs exhibited od morphologies as observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). However, electrochemical testing showed that the performance of the graphene (GNS) electrodes in supercapacitors was poor. To increase the surface active sites for electrochemical reactions and promote the wettability by aqueous electrolyte of the GNSs, a nitric acid treatment was used to chemically modify their surface. The acid treatment introduced more oxygen/nitrogen-containing functional groups onto the GNS surface, and clearly enhanced the hydrophilicity. The nitric-acid-modified GNSs (H-GNSs) showed vastly better electrode performance, with a maximum specific capacitance of 65.5 F·g-1 (about 30 times that of original GNSs) at a current density of 0.5 A·g-1 in 2 mol·L-1 KOH electrolyte. In addition, the H-GNS electrode showed od cycling stability and lifetime after running 2000 cycles. Therefore, H-GNSs may be an attractive candidate as electrode materials for supercapacitors.

  • 加载中
    1. [1]

      (1) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. doi: 10.1021/cr020730k

    2. [2]

      (2) Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539. doi: 10.1149/1.2085829

    3. [3]

      (3) Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T.Chem. Eur. J. 2009, 15, 5320. doi: 10.1002/chem.200802671

    4. [4]

      (4) Wu, Z. S.;Wang, D.W.; Ren,W. C.; Zhao, J. P.; Zhou, G. M.;Li, F.; Cheng, H. M. Adv. Funct. Mater. 2010, 20, 3595. doi: 10.1002/adfm.201001054

    5. [5]

      (5) Lang, J.W.; Kong, L. B.;Wu,W. J.; Luo, Y. C.; Kang, L. Chem. Commun. 2008, 4213.

    6. [6]

      (6) Li, Y. M.; Van Zijll, M.; Chiang, S.; Pan, N. J. Power Sources2011, 196, 6003. doi: 10.1016/j.jpowsour.2011.02.092

    7. [7]

      (7) Chang, J. K.; Tsai,W. T. J. Electrochem. Soc. 2005, 152, A2063.

    8. [8]

      (8) Zhang, H.; Cao, G. P.;Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu,Z. N. Electrochem. Commun. 2008, 10, 1056. doi: 10.1016/j.elecom.2008.05.007

    9. [9]

      (9) Nam, K.W.; Kim, K. B. J. Electrochem. Soc. 2002, 149, A346.

    10. [10]

      (10) Lei, Z. B.; Christov, N.; Zhao, X. S. Energy Environ. Sci. 2011,4, 1866. doi: 10.1039/c1ee01094h

    11. [11]

      (11) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110,132. doi: 10.1021/cr900070d

    12. [12]

      (12) Zhang, H. X.; Lv, J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano2010, 4, 380. doi: 10.1021/nn901221k

    13. [13]

      (13) Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B.G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai,R.; Ajayan, P. M. Nano Lett. 2011, 11, 1423. doi: 10.1021/nl200225j

    14. [14]

      (14) Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.;Wang, C. Y.; Chen,M. M.; Chen, Y. S. J. Phys. Chem. C 2009, 113, 13103. doi: 10.1021/jp902214f

    15. [15]

      (15) Li, Z. J.; Yang, B. C.; Zhang, S. R.; Zhao, M. X. Appl. Surf. Sci.2011, 258, 3726.

    16. [16]

      (16) Wang, D.W.; Li, F. Z.;Wu, S.; Ren,W.; Cheng, H. M.Electrochem. Commun. 2009, 11, 1729. doi: 10.1016/j.elecom.2009.06.034

    17. [17]

      (17) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q

    18. [18]

      (18) Stoller, M. D.; Park, S.; Zhu, Y.W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498. doi: 10.1021/nl802558y

    19. [19]

      (19) Liu,W.W.; Yan, X. B.; Lang, J.W.; Xue, Q. J. J. Mater. Chem.2011, 21, 13205. doi: 10.1039/c1jm11930c

    20. [20]

      (20) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896

    21. [21]

      (21) Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25. doi: 10.1038/nnano.2008.329

    22. [22]

      (22) Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.;Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.;Rotenberg, E.; Schmid, A. K.;Waldmann, D.;Weber, H. B.;Seyller, T. Nat. Mater. 2009, 8, 203. doi: 10.1038/nmat2382

    23. [23]

      (23) Sutter, P.W.; Flege, J. I.; Sutter, E. A. Nat. Mater. 2008, 7, 406.doi: 10.1038/nmat2166

    24. [24]

      (24) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J.H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.doi: 10.1038/nature07719

    25. [25]

      (25) Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Rader, H. J.;Mullen, K. J. Am. Chem. Soc. 2008, 130, 4216. doi: 10.1021/ja710234t

    26. [26]

      (26) Subrahmanyam, K. S.; Panchakarla, L. S.; vindaraj, A.; Rao,C. N. R. J. Phys. Chem. C 2009, 113, 4257.

    27. [27]

      (27) Wu, Z.; Ren,W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.;Yu, B.; Jiang, C.; Cheng, H. ACS Nano 2009, 3, 411. doi: 10.1021/nn900020u

    28. [28]

      (28) Yan, L.;Wang, Z. Y.; Zhang, H.; Fang, J.; Cao, G. P.; Shi, Z. J.;Wang, B. Y. Journal of Inorganic Materials 2010, 25, 725. doi: 10.3724/SP.J.1077.2010.00725

    29. [29]

      (29) Yu, D. S.; Dai, L. M. J. Phys. Chem. Lett. 2009, 1, 467.

    30. [30]

      (30) Du, Q. L.; Zheng, M. B.; Zhang, L. F.;Wang, Y.W.; Chen, J. H.;Xue, L. P.; Dai,W. J.; Ji, G. B.; Cao, J. M. Electrochim. Acta2010, 55, 3897. doi: 10.1016/j.electacta.2010.01.089

    31. [31]

      (31) Qian, Y.; Lu, S. B.; Gao, F. L. J. Mater. Sci. 2011, 46, 3517. doi: 10.1007/s10853-011-5260-y

    32. [32]

      (32) Lu, X.J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G.Acta Phys. -Chim. Sin. 2011, 27, 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27, 2333.]doi: 10.3866/PKU.WHXB20111022

    33. [33]

      (33) Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j

    34. [34]

      (34) Liang, M. H.; Zhi, L. J. J. Mater. Chem. 2009, 19, 5871. doi: 10.1039/b901551e

    35. [35]

      (35) Lang, J.W.; Yan, X. B.; Yuan, X. Y.; Yang, J.; Xue, Q. J.J. Power Sources 2011, 196, 10472. doi: 10.1016/j.jpowsour.2011.08.017

    36. [36]

      (36) Shen, B. S.; Ding, J. J.; Yan, X. B.; Feng,W. J.; Li, J.; Xue, Q. J.Appl. Surf. Sci. 2012, 258, 4523. doi: 10.1016/j.apsusc.2012.01.019

    37. [37]

      (37) Kong, L. B.; Lang, J.W.; Liu, M.; Luo, Y. C.; Kang, L. J. Power Sources 2009, 194, 1194. doi: 10.1016/j.jpowsour.2009.06.016

    38. [38]

      (38) Wu, Y. P.;Wang, B.; Ma, Y. F.; Huang, Y.; Li, N.; Zhang, F.;Chen, Y. S. Nano Res. 2010, 3, 661. doi: 10.1007/s12274-010-0027-3

    39. [39]

      (39) Chen, C. M.; Huang, J. Q.; Zhang, Q.; ng,W. Z.; Yang, Q.H.;Wang, M. Z.; Yang, Y. G. Carbon 2012, 50, 659. doi: 10.1016/j.carbon.2011.09.022

    40. [40]

      (40) Bichat, M. P.; Raymundo-Piñero, E.; Béguin, F. Carbon 2010,48, 4351. doi: 10.1016/j.carbon.2010.07.049

    41. [41]

      (41) Lufrano, F.; Staiti, P. Energy Fuels 2010, 24, 3313. doi: 10.1021/ef901447y

    42. [42]

      (42) Wang, J.; Chen, M. M.;Wang, C. Y.;Wang, J. Z.; Zheng, J. M.J. Power Sources 2011, 196, 550. doi: 10.1016/j.jpowsour.2010.07.030


  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(1350)
  • Abstract views(3361)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return