Citation: WANG Tian-He, LIU Ze, WANG Wei-Gang, GE Mao-Fa. Heterogeneous Uptake Kinetics of Limonene and Limonene Oxide by Sulfuric Acid Solutions[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1608-1614. doi: 10.3866/PKU.WHXB201204241 shu

Heterogeneous Uptake Kinetics of Limonene and Limonene Oxide by Sulfuric Acid Solutions

  • Received Date: 26 March 2012
    Available Online: 24 April 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB403401) (973) (2011CB403401)国家自然科学基金(40925016, 21077109, 41005070)资助 (40925016, 21077109, 41005070)

  • The heterogeneous uptake of limonene and limonene oxide (also known as 1,8-cineole) by a range of different aqueous sulfuric acid (H2SO4) solutions (30%-80% (w)) was investigated to develop an understanding of the reactivity of biogenic organic compounds in the atmosphere towards acidic aerosols. Experiments were performed using a rotating wetted-wall reactor coupled to a single photon ionization time-of-flight mass spectrometer. The heterogeneous uptake of the compounds into H2SO4 followed first-order kinetics and the corresponding steady-state uptake coefficients (γ) were calculated for the first time. Limonene oxide was found to be more reactive than limonene towards H2SO4. Reactive uptake was observed for limonene oxide in acidic solution containing greater than 30% (w). The steady-state uptake coefficients of limonene oxide in 30%-50% (w) H2SO4 solutions at room temperature ranged from (7.100± 0.023)×10-5 to (8.150±0.162)×10-3. Furthermore, the reactions of limonene oxide with sulfuric acid in bulk solution were investigated using gas chromatography-mass spectrometry (GC-MS) and electron spray ionization-mass spectroscopy (ESI-MS). Analysis of the products revealed the presence of monoterpenes, terpineols, terpin hydrates, and terpin hydrate diorganosulfate from the bulk solution reaction of limonene oxide with H2SO4. The formation of significantly more hydrophobic organic compounds with lower volatilities suggested that limonene oxide is a significant precursor in the formation of atmospheric secondary organic aerosols. A transformation mechanism has been proposed based on the products.

    1. [1]

      (1) Zhu, F. J.; Guo, Y. L. Chin. J. Chem. 2010, 28, 1451. doi: 10.1002/cjoc.201090248

    2. [2]

      (2) Comai, S.; Dall'Acqua, S.; Grillo, A.; Castagliuolo, I.; Gurung,K.; Innocenti, G. Fitoterapia 2010, 81, 11. doi: 10.1016/j.fitote.2009.06.017

    3. [3]

      (3) Staudt, M.; Bertin, N.; Frenzel, B.; Seufert, G. J. Atmos. Chem.2000, 35, 77. doi: 10.1023/A:1006233010748

    4. [4]

      (4) Kesselmeier, J.; Staudt, M. J. Atmos. Chem. 1999, 33, 23. doi: 10.1023/A:1006127516791

    5. [5]

      (5) Went, F.W. Nature 1960, 187, 641. doi: 10.1038/187641a0

    6. [6]

      (6) Griffin, R. J.; Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H.J. Geophys. Res-Atmos. 1999, 104, 3555. doi: 10.1029/1998JD100049

    7. [7]

      (7) Zhang, R. Y. Science 2010, 328, 1366. doi: 10.1126/science.1189732

    8. [8]

      (8) Ravishankara, A. R. Science 1997, 276, 1058. doi: 10.1126/science.276.5315.1058

    9. [9]

      (9) Esteve,W.; Noziere, B. J. Phys. Chem. A 2005, 109, 10920. doi: 10.1021/jp051199a

    10. [10]

      (10) Noziere, B.; Voisin, D.; Longfellow, C. A.; Friedli, H.; Henry, B.E.; Hanson, D. R. J. Phys. Chem. A 2006, 110, 2387.

    11. [11]

      (11) Raja, S.; Valsaraj, K. T. Atmos. Res. 2006, 81, 277. doi: 10.1016/j.atmosres.2006.01.004

    12. [12]

      (12) Jang, M. S.; Czoschke, N. M.; Lee, S.; Kamens, R. M. Science2002, 298, 814. doi: 10.1126/science.1075798

    13. [13]

      (13) Liggio, J.; Li, S. M.; Mclaren, R. Environ. Sci. Technol. 2005,39, 1532. doi: 10.1021/es048375y

    14. [14]

      (14) Liu, Z.; Ge, M.; Yin, S.;Wang,W. Chem. Phys. Lett. 2010, 491,146. doi: 10.1016/j.cplett.2010.04.004

    15. [15]

      (15) Liu, Z.; Ge, M. F.;Wang,W. G.; Yin, S.; Tong, S. R. Phys. Chem. Chem. Phys. 2011, 13, 2069.

    16. [16]

      (16) Howard, C. J. J. Phys. Chem. 1979, 83, 3. doi: 10.1021/j100464a001

    17. [17]

      (17) Murphy, D. M.; Fahey, D.W. Anal. Chem. 1987, 59, 2753. doi: 10.1021/ac00150a006

    18. [18]

      (18) Hanson, D. R.; Burkholder, J. B.; Howard, C. J.; Ravishankara,A. R. J. Phys. Chem. 1992, 96, 4979. doi: 10.1021/j100191a046

    19. [19]

      (19) Fuller, E. N.; Schettle, P.; Giddings, J. C. Ind. Eng. Chem. 1966,58, 19.

    20. [20]

      (20) Xu, Z. F.; Liu, Z.; Ge, M. F.;Wang,W. G. Chin. Sci. Bull. 2011,56, 1352. [徐志芳, 刘泽, 葛茂发, 王炜罡. 科学通报, 2011,56, 1352.] doi: 10.1007/s11434-011-4461-8

    21. [21]

      (21) Li, Y. J.; Cheong, G. Y. L.; Lau, A. P. S.; Chan, C. K. Environ. Sci. Technol. 2010, 44, 5483. doi: 10.1021/es101231m

    22. [22]

      (22) Ferek, R. J.; Lazrus, A. L.; Haagenson, P. L.;Winchester, J.W.Environ. Sci. Technol. 1983, 17, 315. doi: 10.1021/es00112a003

    23. [23]

      (23) Matsuura, T.; Komae, H.; Saito, K. B. Chem. Soc. Jpn. 1958, 31,990. doi: 10.1246/bcsj.31.990

    24. [24]

      (24) Lombard, R.; Geiger, E. Bull. Soc. Chim. Fran. 1956, 1564.

    25. [25]

      (25) Surratt, J. D.; mez- nzalez, Y.; Chan, A.W. H.; Vermeylen,R.; Shahgholi, M.; Kleindienst, T. E.; Edney, E. O.; Offenberg,J. H.; Lewandowski, M.; Jaoui, M.; Maenhaut,W.; Claeys, M.;Flagan, R. C.; Seinfeld, J. H. J. Phys. Chem. A 2008, 112, 8345.doi: 10.1021/jp802310p

    26. [26]

      (26) Liggio, J.; Li, S. M. Atmos. Chem. Phys. 2008, 8, 2039. doi: 10.5194/acp-8-2039-2008

    27. [27]

      (27) din, S.; Poole, L. R. Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project-Report No.44; 1998.


    1. [1]

      (1) Zhu, F. J.; Guo, Y. L. Chin. J. Chem. 2010, 28, 1451. doi: 10.1002/cjoc.201090248

    2. [2]

      (2) Comai, S.; Dall'Acqua, S.; Grillo, A.; Castagliuolo, I.; Gurung,K.; Innocenti, G. Fitoterapia 2010, 81, 11. doi: 10.1016/j.fitote.2009.06.017

    3. [3]

      (3) Staudt, M.; Bertin, N.; Frenzel, B.; Seufert, G. J. Atmos. Chem.2000, 35, 77. doi: 10.1023/A:1006233010748

    4. [4]

      (4) Kesselmeier, J.; Staudt, M. J. Atmos. Chem. 1999, 33, 23. doi: 10.1023/A:1006127516791

    5. [5]

      (5) Went, F.W. Nature 1960, 187, 641. doi: 10.1038/187641a0

    6. [6]

      (6) Griffin, R. J.; Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H.J. Geophys. Res-Atmos. 1999, 104, 3555. doi: 10.1029/1998JD100049

    7. [7]

      (7) Zhang, R. Y. Science 2010, 328, 1366. doi: 10.1126/science.1189732

    8. [8]

      (8) Ravishankara, A. R. Science 1997, 276, 1058. doi: 10.1126/science.276.5315.1058

    9. [9]

      (9) Esteve,W.; Noziere, B. J. Phys. Chem. A 2005, 109, 10920. doi: 10.1021/jp051199a

    10. [10]

      (10) Noziere, B.; Voisin, D.; Longfellow, C. A.; Friedli, H.; Henry, B.E.; Hanson, D. R. J. Phys. Chem. A 2006, 110, 2387.

    11. [11]

      (11) Raja, S.; Valsaraj, K. T. Atmos. Res. 2006, 81, 277. doi: 10.1016/j.atmosres.2006.01.004

    12. [12]

      (12) Jang, M. S.; Czoschke, N. M.; Lee, S.; Kamens, R. M. Science2002, 298, 814. doi: 10.1126/science.1075798

    13. [13]

      (13) Liggio, J.; Li, S. M.; Mclaren, R. Environ. Sci. Technol. 2005,39, 1532. doi: 10.1021/es048375y

    14. [14]

      (14) Liu, Z.; Ge, M.; Yin, S.;Wang,W. Chem. Phys. Lett. 2010, 491,146. doi: 10.1016/j.cplett.2010.04.004

    15. [15]

      (15) Liu, Z.; Ge, M. F.;Wang,W. G.; Yin, S.; Tong, S. R. Phys. Chem. Chem. Phys. 2011, 13, 2069.

    16. [16]

      (16) Howard, C. J. J. Phys. Chem. 1979, 83, 3. doi: 10.1021/j100464a001

    17. [17]

      (17) Murphy, D. M.; Fahey, D.W. Anal. Chem. 1987, 59, 2753. doi: 10.1021/ac00150a006

    18. [18]

      (18) Hanson, D. R.; Burkholder, J. B.; Howard, C. J.; Ravishankara,A. R. J. Phys. Chem. 1992, 96, 4979. doi: 10.1021/j100191a046

    19. [19]

      (19) Fuller, E. N.; Schettle, P.; Giddings, J. C. Ind. Eng. Chem. 1966,58, 19.

    20. [20]

      (20) Xu, Z. F.; Liu, Z.; Ge, M. F.;Wang,W. G. Chin. Sci. Bull. 2011,56, 1352. [徐志芳, 刘泽, 葛茂发, 王炜罡. 科学通报, 2011,56, 1352.] doi: 10.1007/s11434-011-4461-8

    21. [21]

      (21) Li, Y. J.; Cheong, G. Y. L.; Lau, A. P. S.; Chan, C. K. Environ. Sci. Technol. 2010, 44, 5483. doi: 10.1021/es101231m

    22. [22]

      (22) Ferek, R. J.; Lazrus, A. L.; Haagenson, P. L.;Winchester, J.W.Environ. Sci. Technol. 1983, 17, 315. doi: 10.1021/es00112a003

    23. [23]

      (23) Matsuura, T.; Komae, H.; Saito, K. B. Chem. Soc. Jpn. 1958, 31,990. doi: 10.1246/bcsj.31.990

    24. [24]

      (24) Lombard, R.; Geiger, E. Bull. Soc. Chim. Fran. 1956, 1564.

    25. [25]

      (25) Surratt, J. D.; mez- nzalez, Y.; Chan, A.W. H.; Vermeylen,R.; Shahgholi, M.; Kleindienst, T. E.; Edney, E. O.; Offenberg,J. H.; Lewandowski, M.; Jaoui, M.; Maenhaut,W.; Claeys, M.;Flagan, R. C.; Seinfeld, J. H. J. Phys. Chem. A 2008, 112, 8345.doi: 10.1021/jp802310p

    26. [26]

      (26) Liggio, J.; Li, S. M. Atmos. Chem. Phys. 2008, 8, 2039. doi: 10.5194/acp-8-2039-2008

    27. [27]

      (27) din, S.; Poole, L. R. Scientific Assessment of Ozone Depletion, Global Ozone Research and Monitoring Project-Report No.44; 1998.


  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    3. [3]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    9. [9]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    10. [10]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(786)
  • Abstract views(2292)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return