Citation: HU Bo, YAO Chan, WANG Qing-Wei, ZHANG Hao, YU Jian-Kang. Electronic, Optical and Charge Transport Properties of D-π-A-π-D Type Naphthalene-Based Derivatives[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1651-1657. doi: 10.3866/PKU.WHXB201204194 shu

Electronic, Optical and Charge Transport Properties of D-π-A-π-D Type Naphthalene-Based Derivatives

  • Received Date: 30 December 2011
    Available Online: 19 April 2012

    Fund Project: 科学技术研究项目(2010142) (2010142)四平市科技发展计划(2010009)资助 (2010009)

  • A luminescent donor-π-bridge-acceptor-π-bridge-donor (D-π-A-π-D) type naphthalene-based derivative and its“CH”/N substituted derivatives have been designed and their electronic, optical, and charge transport properties were investigated using quantum chemical approaches. Our calculations have shown that changes in molecular structure lead to modifications in the electronic structure, resulting in a modulation of the electronic bandgap and hence of the optical properties. Remarkably, the calculated emission spectra can nearly cover the full UV-Vis spectrum (from 447.7 to 743.1 nm). Also, large Stokes shifts were observed, ranging from 106.1 to 222.4 nm, resulting from a more planar conformation of the excited state between the two adjacent units in the molecular backbone relative to the ground state. Calculated results also showed that the designed compounds could be used as hole transport materials in organic light-emitting diodes.

  • 加载中
    1. [1]

      (1) Li, Z. H.;Wong, M. S.; Fukutani, H.; Tao, Y. Chem. Mater.2005, 17, 5032. doi: 10.1021/cm051163v

    2. [2]

      (2) Yoon, M. H.; Facchetti, A.; Stern, C. E.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 5792. doi: 10.1021/ja060016a

    3. [3]

      (3) Li, Q.; Yu, J. S.; Li, L.; Jiang, Y. D.; Suo, F.; Zhan, X.W. Acta Phys. -Chim. Sin. 2008, 24, 133. [李青, 于军胜, 李璐,蒋亚东, 锁钒, 占肖卫. 物理化学学报, 2008, 24, 133.]doi: 10.3866/PKU.WHXB20080123

    4. [4]

      (4) Tang, X. Q.; Yu, J. S.; Li, L.;Wang, J.; Jiang, Y. D. Acta Phys. -Chim. Sin. 2008, 24, 1012. [唐晓庆, 于军胜, 李璐,王军, 蒋亚东. 物理化学学报, 2008, 24, 1012.] doi: 10.3866/PKU.WHXB20080617

    5. [5]

      (5) Guo, X.; Qin, C. J.; Cheng, Y. X.; Xie, Z. Y.; Geng, Y. H.; Jing,X. B.;Wang, F. S.;Wang, L. X. Adv. Mater. 2009, 21, 3682.doi: 10.1002/adma.200803734

    6. [6]

      (6) Yu, X. H.; Ge, G. P.; Zhang, G. L.; Guo, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 1184. [于晓航, 葛国平, 张国林, 郭海清. 物理化学学报, 2010, 26, 1184.] doi: 10.3866/PKU.WHXB20100442

    7. [7]

      (7) Chen, S. F.; Deng, L. L.; Xie, J.; Peng, L.; Xie, L. H.; Fan, Q.L.; Huang,W. Adv. Mater. 2010, 22, 5227. doi: 10.1002/adma.201001167

    8. [8]

      (8) Xiao, L. X.; Chen, Z. J.; Qu, B.; Luo, J. X.; Kong, S.; ng, Q.H.; Kido, J. J. Adv. Mater. 2011, 23, 926. doi: 10.1002/adma.201003128

    9. [9]

      (9) Xiao, L. X.; Hu, S. Y.; Kong, S.; Chen, Z. J.; Qu, B.; ng, Q.H. Acta Phys. -Chim. Sin. 2011, 27, 977. [肖立新, 胡双元,孔胜, 陈志坚, 曲波, 龚旗煌. 物理化学学报, 2011, 27,977.] doi: 10.3866/PKU.WHXB20110325

    10. [10]

      (10) Wang, J.; Zhang, F. J.; Xu, Z.;Wang, Y. S. Acta Phys. -Chim. Sin. 2012, 28, 949. [王健, 张福俊, 徐征, 王永生. 物理化学学报, 2012, 28, 949.] doi: 10.3866/PKU.WHXB201201163

    11. [11]

      (11) Thomas, K. R. J.; Lin, J. T.; Velusamy, M.; Tao, Y. T.; Chuen, C.H. Adv. Funct. Mater. 2004, 14, 83. doi: 10.1002/adfm.200304486

    12. [12]

      (12) Kato, S. I.; Matsumoto, T.; Shigeiwa, M.; rohmaru, H.;Maeda, S.; Ishi-i, T.; Mataka, S. Chem. Eur. J. 2006, 12, 2303.doi: 10.1002/chem.200500921

    13. [13]

      (13) Gahungu, G.; Zhang, J. P. J. Phys. Chem. B 2005, 109, 17762.doi: 10.1021/jp052220a

    14. [14]

      (14) Chen, C. H.; Shi, J. M. Coord. Chem. Rev. 1998, 171, 161. doi: 10.1016/S0010-8545(98)90027-3

    15. [15]

      (15) Hu, B.; Zhang, J. P. Polymer 2009, 50, 6172. doi: 10.1016/j.polymer.2009.10.034

    16. [16]

      (16) McWeeny, R.; Diercksen, G. J. Chem. Phys. 1968, 49, 4852.doi: 10.1063/1.1669970

    17. [17]

      (17) (a) Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.

    18. [18]

      (b) Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1954, 22, 571.doi: 10.1103/RevModPhys.23.69

    19. [19]

      (18) Foresman, J. B.; Head- rdon, M.; Pople, J. A.; Frisch, M. J.J. Phys. Chem. 1992, 96, 135. doi: 10.1021/j100180a030

    20. [20]

      (19) Parr, R. G.; Yang,W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.

    21. [21]

      (20) (a) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.

    22. [22]

      (b) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.doi: 10.1063/1.478401

    23. [23]

      (21) (a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218.

    24. [24]

      (b) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996,256, 454.

    25. [25]

      (c) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R.J. Chem. Phys. 1998, 108, 4439. doi: 10.1063/1.477483

    26. [26]

      (22) (a) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.

    27. [27]

      (b) rdon, M. S. Chem. Phys. Lett. 1980, 76, 163.

    28. [28]

      (c) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys.1984, 80, 3265. doi: 10.1080/00268977400100171

    29. [29]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.

    30. [30]

      (24) O'Boyle, N. M.; Vos, J. G. Gauss Sum 0.8; Dublin CityUniversity: Dublin, 2004.

    31. [31]

      (25) Hu, B.; Zhang, J. P.; Chen, Y. Eur. Polym. J. 2011, 47, 208. doi: 10.1016/j.eurpolymj.2010.12.001

    32. [32]

      (26) (a) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    33. [33]

      (b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M.J. J. Phys. Chem. 1994, 98, 11623.

    34. [34]

      (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1103/PhysRevB.37.785

    35. [35]

      (27) Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51.doi: 10.1016/j.cplett.2004.06.011

    36. [36]

      (28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.

    37. [37]

      (29) Sun, M.; Niu, B.; Zhang, J. P. Computational and Theoretical Chemistry 2008, 862, 85.

    38. [38]

      (30) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc.2005, 127, 2339.

    39. [39]

      (31) Mala li, M.; Brédas, J. L. Chem. Phys. Lett. 2000, 327, 13.doi: 10.1016/S0009-2614(00)00757-0


  • 加载中
    1. [1]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    11. [11]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    12. [12]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    15. [15]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    16. [16]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

Metrics
  • PDF Downloads(739)
  • Abstract views(1977)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return