Citation: LIU Xiao-Jun, LIN Tao, CAI Xin-Chen, GAO Shao-Wei, YANG Lei, MA Rui, ZHANG Jin-Yue. State-Specific (Linear-Response)-Polarizable Continuum Models/ Time-Dependent Density Functional Theory Study on the Absorption and Emission Spectra of an Organic Fluorescent Emitter[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1329-1336. doi: 10.3866/PKU.WHXB201204193 shu

State-Specific (Linear-Response)-Polarizable Continuum Models/ Time-Dependent Density Functional Theory Study on the Absorption and Emission Spectra of an Organic Fluorescent Emitter

  • Received Date: 31 January 2012
    Available Online: 19 April 2012

    Fund Project: 国家自然科学基金(21003009) (21003009) 北京交通大学基金(2009JBZ019-4, 本科生创新实验项目) (2009JBZ019-4, 本科生创新实验项目)

  • 3-(dicyanomethylene)-5,5-dimethyl-1-(3-[9-(2-ethyl-hexyl)-carbazol]-vinyl) cyclohexene (DCDHCC) is one of a series of organic dyes with od emission performance in photoelectric devices. The absorption and emission spectra of DCDHCC were computed using PBE0, BMK, and M06 hybrids in the frame of time-dependent density functional theory (TDDFT) in combination with polarizable continuum models (PCMs). Linear-response (LR) and state-specific (SS) PCM approaches were used as well as 6-31G(d) and 6-31+G(d,p) basis sets. The absorption and emission spectra were calculated in benzene, tetrahydrofuran, and acetone and compared with experimental observations. On the one hand, choice of hybrids was found to have a greater effect on the absorption spectra than the basis sets or the solvent model and BMK was established to be a suitable functional for the calculation of the absorption spectra of DCDHCC, on the other hand, the basis set used had a significant impact on the geometries of the excited states and thus the emission spectra, and the 6-31+G(d,p) basis set was necessary for the optimization of the excited states. It is envisaged that our calculations may be of assistance in the design of analo us emitters.
  • 加载中
    1. [1]

      (1) Ju, H. D. Design, Synthesis and Properties of Isophorone-based Light-Emitting Materials. Ph.D. Dissertation, Shandong University, Jinan, 2007. [鞠海东. 异佛乐酮类发光材料的设计、合成与性质研究[D]. 济南: 山东大学, 2007.]

    2. [2]

      (2) Ju, H. D.; Tao, X. T.; Wan, Y.; Shi, J. H.; Yang, J. X.; Xin, Q.; Zou, D. C.; Jiang, M. H. Chem. Phys. Lett. 2006, 432, 321.  doi: 10.1016/j.cplett.2006.09.066

    3. [3]

      (3) Ju, H. D.; Wan, Y.; Yu, W. T.; Liu, A. Y.; Liu, Y.; Ren, Y.; Tao, X. T.; Zou, D. C. Thin Solid Films 2006, 515, 2403.  doi: 10.1016/j.tsf.2006.05.045

    4. [4]

      (4) Tao, X. T.; Miyata, S.; Sasabe, H.; Zhang, G. J.; Wada, T.; Jiang, M. H. Appl. Phys. Lett. 2001, 78, 279.  doi: 10.1063/1.1341226

    5. [5]

      (5) Liu, X. J.; Wang, N.; Cheng, H. Acta Phys. -Chim. Sin. 2011, 27, 1640. [刘小君, 王宁, 程浩. 物理化学学报, 2011, 27, 1640.]  doi: 10.3866/PKU.WHXB20110718

    6. [6]

      (6) Liu, X. J.; Zhang, X.; Hou, Y. B.; Teng, F.; Lou, Z. D. Chem. Phys. 2011, 381, 100.  10.1016/j.chemphys.2011.01.015

    7. [7]

      (7) Liu, X. J.; Yang, D.; Ju, H. D.; Teng, F.; Hou, Y. B.; Lou, Z. D. Chem. Phys. Lett. 2011, 503, 75.  doi: 10.1016/j.cplett.2011.01.003

    8. [8]

      (8) Liu, X. J.; Ju, H. D.; Zhao, X.; Tao, X. T.; Bian, W. S.; Jiang, M. H. J. Chem. Phys. 2006, 124, 174711.  doi: 10.1063/1.2189231

    9. [9]

      (9) Jacquemin, D.; Perpete, E. A.; Ciofini, I.; Adamo, C. Accounts Chem. Res. 2009, 42, 326.  doi: 10.1021/ar800163d

    10. [10]

      (10) Improta, R.; Ferrante, C.; Bozio, R.; Barone, V. Phys. Chem. Chem. Phys. 2009, 11, 4664.

    11. [11]

      (11) Wiggins, P.; Williams, J. A. G.; Tozer, D. J. J. Chem. Phys. 2009, 131, 91101.  doi: 10.1063/1.3222641

    12. [12]

      (12) Guido, C. A.; Jacquemin, D.; Adamo, C.; Mennucci, B. J. Phys. Chem. A 2010, 114, 13402.  doi: 10.1021/jp109218z

    13. [13]

      (13) Azazi, A.; Mabrouk, A.; Alimi, K. Comput. Theo. Chem. 2011, 978, 7.  doi: 10.1016/j.comptc.2011.08.020

    14. [14]

      (14) Yasarawan, N.; Thipyapong, K.; Ruangpornvisuti, V. J. Mol. Struct. 2011, 1006, 635.  doi: 10.1016/j.molstruc.2011.10.019

    15. [15]

      (15) Ga Siorski, P.; Danel, K. S.; Matusiewicz, M.; Uchacz, T.; Kuznik, W.; Pia Tek, L.; Kityk, A. V. Mater. Chem. Phys. 2012, 132, 330.  doi: 10.1016/j.matchemphys.2011.11.025

    16. [16]

      (16) Zhang, Y.; Zhang, L. L.; Wang, R. S.; Pan, X. M. J. Mol. Graph. Model. 2012, 34, 46.  doi: 10.1016/j.jmgm.2011.12.007

    17. [17]

      (17) Gasiorski, P.; Danel, K. S.; Matusiewicz, M.; Uchacz, T.; Kityk, A. V. Dyes. Pigm. 2012, 93, 1538.  doi: 10.1016/j.dyepig.2011.07.014

    18. [18]

      (18) Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. J. Chem. Theory Comput. 2009, 5, 2420.  doi: 10.1021/ct900298e

    19. [19]

      (19) Jacquemin, D.; Perpète, E.; Ciofini, I.; Adamo, C. Theor. Chem. Acc. 2011, 128, 127.  doi: 10.1007/s00214-010-0783-x

    20. [20]

      (20) Plotner, J.; Tozer, D. J.; Dreuw, A. J. Chem. Theory Comput. 2010, 6, 2315.  doi: 10.1021/ct1001973

    21. [21]

      (21) Tian, B.; Eriksson, E. S. E.; Eriksson, L. A. J. Chem. Theory Comput. 2010, 6, 2086.  doi: 10.1021/ct100148h

    22. [22]

      (22) Jacquemin, D.; Perpe Te, E. A.; Ciofini, I.; Adamo, C.; Valero, R.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6, 2071.  doi: 10.1021/ct100119e

    23. [23]

      (23) Andzelm, J.; Rinderspacher, B. C.; Rawlett, A.; Dougherty, J.; Baer, R.; vind, N. J. Chem. Theory Comput. 2009, 5, 2835.  doi: 10.1021/ct900231r

    24. [24]

      (24) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.  doi: 10.1063/1.478522

    25. [25]

      (25) Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.  doi: 10.1063/1.1774975

    26. [26]

      (26) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    27. [27]

      (27) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.  doi: 10.1021/cr9904009

    28. [28]

      (28) Improta, R.; Scalmani, G.; Frisch, M. J.; Barone, V. J. Chem. Phys. 2007, 127, 745047.

    29. [29]

      (29) Zhang, Y.; Zhang, L. L.; Wang, R. S.; Pan, X. M. J. Mol. Graph. Model. 2012, 34, 46.  doi: 10.1016/j.jmgm.2011.12.007

    30. [30]

      (30) Aloise, S.; Pawlowska, Z.; Ruckebusch, C.; Sliwa, M.; Dubois, J.; Poizat, O.; Buntinx, G.; Perrier, A.; Maurel, F.; Jacques, P.; Malval, J. P.; Poisson, L.; Piani, G.; Abe, J. Phys. Chem. Chem. Phys. 2012, 14, 1945.

    31. [31]

      (31) Liu, X. J.; Wang, N.; Lv, L. F.; Cai, L. Z. Comput. Theo. Chem. 2011, 978, 29.  doi: 10.1016/j.comptc.2011.09.031

    32. [32]

      (32) Venkataramanan, N. S.; Suvitha, A.; Nejo, H.; Mizuseki, H.; Kawazoe, Y. Int. J. Quant. Chem. 2011, 111, 2340.  doi: 10.1002/qua.22519

    33. [33]

      (33) Xue, Y. S.; Liu, Y.; An, L.; Zhang, L.; Yuan, Y. M.; Mou, J.; Liu, L.; Zheng, Y. G. Comput. Theo. Chem. 2011, 965, 146.  doi: 10.1016/j.comptc.2011.01.042

    34. [34]

      (34) Bamgbelu, A.; Wang, J.; Leszczynski, J. J. Phys. Chem. A 2010, 114, 3551.  doi: 10.1021/jp908485z

    35. [35]

      (35) Cossi, M.; Barone, V. J. Chem. Phys. 2000, 112, 2427.  doi: 10.1063/1.480808

    36. [36]

      (36) Cossi, M.; Barone, V.; Robb, M. J. Chem. Phys. 1999, 111, 5295.  doi: 10.1063/1.479788

    37. [37]

      (37) Cossi, M.; Barone, V. J. Chem. Phys. 2001, 115, 4708.  doi: 10.1063/1.1394921

    38. [38]

      (38) Cammi, R.; Mennucci, B.; Tomasi, J. J. Phys. Chem. A 2000, 104, 5631.  doi: 10.1021/jp000156l

    39. [39]

      (39) Improta, R.; Barone, V.; Scalmani, G.; Frisch, M. J. J. Chem. Phys. 2006, 125, 54103.  doi: 10.1063/1.2222364

    40. [40]

      (40) Cammi, R.; Corni, S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2005, 122, 104513.  doi: 10.1063/1.1867373

    41. [41]

      (41) Corni, S.; Cammi, R.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2005, 123, 134512.  doi: 10.1063/1.2039077

    42. [42]

      (42) Dodson, L. G.; Vogt, R. A.; Marks, J.; Reichardt, C.; Crespo-Hernandez, C. E. Chemosphere 2011, 83, 1513.  doi: 10.1016/j.chemosphere.2011.01.048

    43. [43]

      (43) Kerkines, I. S. K.; Petsalakis, I. D.; Argitis, P.; Theodorakopoulos, G. Phys. Chem. Chem. Phys. 2011, 13, 21273.

    44. [44]

      (44) Frisch, M.; Trucks, J. G. W.; Schlegel, H. B.; et al. Gaussian 09, Version A.02; Gaussian, Inc.: Wallingford CT, 2009.

    45. [45]

      (45) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.  doi: 10.1063/1.455064

    46. [46]

      (46) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.  doi: 10.1063/1.438955

    47. [47]

      (47) Dreuw, A.; Weisman, J. L.; Head- rdon, M. J. Chem. Phys. 2003, 119, 2943.  doi: 10.1063/1.1590951

    48. [48]

      (48) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007.  doi: 10.1021/ja039556n

    49. [49]

      (49) Santoro, F.; Barone, V.; Lami, A.; Improta, R. Phys. Chem. Chem. Phys. 2010, 12, 4934.

  • 加载中
    1. [1]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(731)
  • Abstract views(2347)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return