Citation: TAN Fu-Rui, LI Hong-Bo, GUI Hui, ZHANG Jing, LI Ru, JIN He-Hua. Effects of Ultrasonic Dispersion on the Separation of Single-Walled Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1790-1796. doi: 10.3866/PKU.WHXB201204174 shu

Effects of Ultrasonic Dispersion on the Separation of Single-Walled Carbon Nanotubes

  • Received Date: 22 February 2012
    Available Online: 17 April 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB932600) (973) (2011CB932600)国家自然科学基金(20903069, 21073223)资助 (20903069, 21073223)

  • Recently, gel chromatography has been demonstrated as an effective method for the separation of single-walled carbon nanotubes (SWCNTs) according to their electronic type and structure. The separation of SWCNTs was thought to result from the different affinity forces between the gel and various SWCNTs. Based on this method, we investigated the effect of ultrasonic time on the dispersion and separation of metallic and semiconducting SWCNTs. At a low ultrasonic power, with the increase of ultrasonic time, better monodispersed SWCNTs in sodium dodecylsulfate (SDS) aqueous solution were obtained. The UV-visible-near infrared (UV-Vis-NIR) absorption, Raman and photoluminescence (PL) spectroscopic characterizations confirmed that under the condition of ultrasonication (2 h), higher-purity metallic tubes and semiconducting tubes with different diameter distributions could be obtained. We believe that the control of the ultrasonication time may tune the mono-dispersity and the length of SWCNTs, which would further influence the difference in affinity forces between various SWCNTs and the gel, therefore leading to different separation results.

  • 加载中
    1. [1]

      (1) Zhang, L.; Tu, X.;Welsher, K.;Wang, X.; Zheng, M.; Dai, H.Journal of the American Chemical Society 2009, 131, 2454. doi: 10.1021/ja8096674

    2. [2]

      (2) Kam, N.W. S.; Jessop, T. C.;Wender, P. A.; Dai, H. Journal of the American Chemical Society 2004, 126, 6850. doi: 10.1021/ja0486059

    3. [3]

      (3) Ramasamy, E.; Lee,W. J.; Lee, D. Y.; Song, J. S. Applied Physics Letters 2007, 90, 173103. doi: 10.1063/1.2731495

    4. [4]

      (4) Lu, F.; Meziani, M. J.; Cao, L.; Sun, Y. P. Langmuir 2011, 27,4339. doi: 10.1021/la103137r

    5. [5]

      (5) LI, R. F.; Shang, Z. F.; Xu, X. F.;Wang, G. C. Acta Phys. -Chim. Sin. 2006, 22, 1388. [李瑞芳, 尚贞锋, 许秀芳, 王贵昌. 物理化学学报, 2006, 22, 1388.] doi: 10.1016/S1872-1508(06)60072-7

    6. [6]

      (6) Zheng, M.; Ja ta, A.; Semke, E. D.; Diner, B. A.; McLean, R.S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nature Materials 2003, 2, 338.

    7. [7]

      (7) Tu, X.; Manohar, S.; Ja ta, A.; Zheng, M. Nature 2009, 460,250. doi: 10.1038/nature08116

    8. [8]

      (8) Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Nature Communications 2011, 2, 309.

    9. [9]

      (9) Li, H.; Jin, H.; Zhang, J.;Wen, X.; Song, Q.; Li, Q. The Journal of Physical Chemistry C 2010, 114, 19234. doi: 10.1021/jp106869r

    10. [10]

      (10) Gui, H.; Li, H.; Tan, F.; Jin, H.; Zhang, J.; Li, Q. Carbon 2012,50, 332. doi: 10.1016/j.carbon.2011.08.034

    11. [11]

      (11) Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin,S.; Barner-Kowollik, C.;Wenzel,W.; Kappes, M. M.; Mayor,M. Journal of the American Chemical Society 2011, 133, 652.

    12. [12]

      (12) Lustig, S. R.; Ja ta, A.; Khripin, C.; Zheng, M. The Journal of Physical Chemistry B 2005, 109, 2559.

    13. [13]

      (13) Tanaka, T.; Urabe, Y.; Nishide, D.; Kataura, H. Applied Physics Express 2009, 2, 125002. doi: 10.1143/APEX.2.125002

    14. [14]

      (14) Wen, X. N.; Zhang, J.; Gu,W. X.; Jin, H. H.; Li, H. B.; Li, Q.W.Acta Phys. -Chim. Sin. 2010, 26, 2757. [温晓南, 张静,顾文秀, 金赫华, 李红波, 李清文. 物理化学学报, 2010, 26,2757.] doi: 10.3866/PKU.WHXB20100932

    15. [15]

      (15) Casey, J. P.; Bachilo, S. M.; Moran, C. H.;Weisman, R. B. ACS Nano 2008, 2, 1738. 10.1021/nn800351n

    16. [16]

      (16) Barman, S. N.; LeMieux, M. C.; Baek, J.; Rivera, R.; Bao, Z.ACS Applied Materials & Interfaces 2010, 2, 2672. doi: 10.1021/am1005223

    17. [17]

      (17) Huang, L.; Zhang, H.;Wu, B.; Liu, Y.;Wei, D.; Chen, J.; Xue,Y.; Yu, G.; Kajiura, H.; Li, Y. The Journal of Physical Chemistry C 2010, 114, 12095. doi: 10.1021/jp102316c

    18. [18]

      (18) Itkis, M.; Perea, D.; Niyogi, S.; Rickard, S.; Hamon, M.; Hu, H.;Zhao, B.; Haddon, R. Nano Letters 2003, 3, 309.

    19. [19]

      (19) Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.;Ohtsuka, Y.; Achiba, Y. Synthetic Metals 1999, 103, 2555.

    20. [20]

      (20) Sinnott, S. B.; Andrews, R. Crit. Rev. Solid State Mat. Sci. 2001,26, 145. doi: 10.1080/20014091104189

    21. [21]

      (21) Pimenta, M.; Marucci, A.; Empedocles, S.; Bawendi, M.;Hanlon, E.; Rao, A.; Eklund, P.; Smalley, R.; Dresselhaus, G.;Dresselhaus, M. Physical Review B 1998, 58, 16016. doi: 10.1103/PhysRevB.58.R16016

    22. [22]

      (22) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. The Journal of Physical Chemistry C 2007, 111, 17887. doi: 10.1021/jp071378n

    23. [23]

      (23) Tanaka, T.; Hehua, J.; Miyata, Y.; Kataura, H. Applied Physics Express 2008, 1, 114001. doi: 10.1143/APEX.1.114001

    24. [24]

      (24) Silvera-Batista, C. A.; Scott, D. C.; McLeod, S. M.; Ziegler, K.J. The Journal of Physical Chemistry C 2011, 115, 9361. doi: 10.1021/jp111349x

    25. [25]

      (25) Carlson, L. J.; Maccagnano, S. E.; Zheng, M.; Silcox, J.;Krauss, T. D. Nano Letters 2007, 7, 3698. doi: 10.1021/nl072014+

    26. [26]

      (26) Dukovic, G.;Wang, F.; Song, D.; Sfeir, M. Y.; Heinz, T. F.;Brus, L. E. Nano Letters 2005, 5, 2314. doi: 10.1021/nl0518122


  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    8. [8]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    9. [9]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

Metrics
  • PDF Downloads(1131)
  • Abstract views(2486)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return