Citation: GUO Xiao-Nan, DU Rui, ZHAO Yan-Ying, PEI Ke-Mei, WANG Hui-Gang, ZHENG Xu-Ming. Dynamic Structures of 2-Thiopyrimidone and 2-Thiopyridone in B-Band Absorptions[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1570-1578. doi: 10.3866/PKU.WHXB201204173
-
The dynamic structures of 2-thiopyrimidone (2TPM) and 2-thiopyridone (2TP) in B-band absorptions were studied using the resonance Raman spectroscopy combined with quantum chemical calculations. In gas phase, 2-thiopyrimidine (2MPM, the thiol form) was more stable than 2TPM (the thione form) by ~15.1 kJ·mol-1, whereas in water and acetonitrile 2TPM was more stable than 2MPM by 29.3 and 28.0 kJ·mol-1, respectively. The transition barrier for the ground state proton transfer tautomerization reaction between 2TPM and 2MPM was ~130 kJ·mol-1 in gas phase on the basis of the B3LYP/6-311++ G(d,p) level of theory calculations. The three absorption bands of 2-thiopyrimidone were respectively assigned as πH→πL*, πH→πL+1*, and πH-1→πL* transitions. The vibrational assignments were carried out for the B-band resonance Raman spectra of 2TPM in water and acetonitrile solvents on the basis of the measurements from the Fourier transform (FT)-Raman and Fourier transform-infrared (FT-IR) spectra of 2TPM in solid and/or in solution phases and B3LYP/6-311++G(d,p) computations. The dynamic structures of 2TPM and 2TP were obtained by analysis of the resonance Raman intensity pattern. The differences in the dynamic structures of 2TPM and 2TP reflected differences in the structures of their ππ*/πσ* conical intersection points, and therefore could be used to provide insight into the photoinduced hydrogen-atom detachment-attachment mechanism.
-
-
[1]
(1) Nimlos, M. R.; Kelley, D. F.; Bernstein, E. R. J. Phys. Chem.1989, 93, 643. doi: 10.1021/j100339a030
-
[2]
(2) Held, A.; Pratt, D.W. J. Am. Chem. Soc. 1993, 115, 9708. doi: 10.1021/ja00074a042
-
[3]
(3) Matsuda, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 110,8397. doi: 10.1063/1.478748
-
[4]
(4) Matsuda, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 2000, 113,573. doi: 10.1063/1.481833
-
[5]
(5) Matsuda, Y.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105,3475. doi: 10.1021/jp003272x
-
[6]
(6) Nowak, M. J.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1992, 96, 1562. doi: 10.1021/j100183a015
-
[7]
(7) Beak, P. Accounts Chem. Res. 1977, 10, 186. doi: 10.1021/ar50113a006
-
[8]
(8) Hatherley, L. D.; Brown, R. D.; dfrey, P. D.; Pierlot, A. P.;Caminati,W.; Damiani, D.; Melandri, S.; Favero, L. B. J. Phys. Chem. 1993, 97, 46. doi: 10.1021/j100103a011
-
[9]
(9) Sanchez, R.; Giuliano, B. M.; Melandri, S.; Favero, L. B.;Caminati,W. J. Am. Chem. Soc. 2007, 129, 6287. doi: 10.1021/ja070712q
-
[10]
(10) Fujimoto, A.; Inuzuka, K.; Shiba, R. Bull. Chem. Soc. Jpn.1981, 54, 2802. doi: 10.1246/bcsj.54.2802
-
[11]
(11) Sakota, K.; Tokuhara, S.; Sekiya, H. Chem. Phys. Lett. 2007,448, 159. doi: 10.1016/j.cplett.2007.09.085
-
[12]
(12) Florio, G. M.; Gruenloh, C. J.; Quimpo, R. C.; Zwier, T. S.J. Chem. Phys. 2000, 113, 11143. doi: 10.1063/1.1324613
-
[13]
(13) Moreno, M.; Miller,W. H. Chem. Phys. Lett. 1990, 171, 475.doi: 10.1016/0009-2614(90)85249-C
-
[14]
(14) Sobolewski, A. L. Chem. Phys. Lett. 1993, 211, 82. doi: 10.1016/0009-2614(93)80055-T
-
[15]
(15) Barone, V.; Adamo, C. Chem. Phys. Lett. 1994, 226, 399. doi: 10.1016/0009-2614(94)00744-6
-
[16]
(16) Barone, V.; Adamo, C. J. Phys. Chem. 1995, 99, 15062. doi: 10.1021/j100041a022
-
[17]
(17) Sobolewski, A. L.; Adamowicz, L. J. Phys. Chem. 1996, 100,3933. doi: 10.1021/jp950852z
-
[18]
(18) Li, Q. S.; Fang,W. H.; Yu, J. G. J. Phys. Chem. A 2005, 109,3983. doi: 10.1021/jp044498t
-
[19]
(19) Wang, J.; Boyd, R. J. J. Phys. Chem. 1996, 100, 16141. doi: 10.1021/jp961295z
-
[20]
(20) Del Bene, J. E. J. Am. Chem. Soc. 1995, 117, 1607. doi: 10.1021/ja00110a016
-
[21]
(21) Chou, P. T.;Wei, C. Y.; Hung, F. T. J. Phys. Chem. B 1997, 101,9119. doi: 10.1021/jp971824e
-
[22]
(22) Dkhissi, A.; Adamowicz, L.; Maes, G. J. Phys. Chem. A 2000,104, 2112. doi: 10.1021/jp9938056
-
[23]
(23) Esboui, M.; Nsan u, M.; Jaidane, N.; Ben Lakhdar, Z. Chem. Phys. 2005, 311, 277. doi: 10.1016/j.chemphys.2004.11.022
-
[24]
(24) Krebs, C.; Forster,W.;Weiss, C.; Hofmann, H. J. J. Prakt. Chem. 1982, 324, 369. doi: 10.1002/prac.19823240304
-
[25]
(25) Esboui, M.; Jaidane, N.; Ben Lakhdar, Z. Chem. Phys. Lett.2006, 430, 195. doi: 10.1016/j.cplett.2006.08.119
-
[26]
(26) Lowdin, P. O. Rev. Mol. Phys. 1963, 35, 724. doi: 10.1103/RevModPhys.35.724
-
[27]
(27) Pullman, B.; Pullman, A. Adv. Heterocycl. Chem. 1971, 13, 77.doi: 10.1016/S0065-2725(08)60349-9
-
[28]
(28) Beak, P.; Covington, J. B.; Smith, S. G. J. Am. Chem. Soc. 1976,98, 8284. doi: 10.1021/ja00441a079
-
[29]
(29) Beak, P.; Fry, F. S., Jr.; Lee, J.; Steele, F. J. Am. Chem. Soc.1976, 98, 171. doi: 10.1021/ja00417a027
-
[30]
(30) Melandri, S.; Evangelisti, L.; Maris, A.; Caminati,W.; Giuliano,B. M.; Feyer, V.; Prince, K. C.; Coreno, M. J. Am. Chem. Soc.2010, 132, 10269. doi: 10.1021/ja104484b
-
[31]
(31) Jones, P. A.; Katritzky, A. R. J. Chem. Soc. 1958, 3610.
-
[32]
(32) Katritzky, A. R.; Jones, R. A. J. Chem. Soc. 1960, 2937.
-
[33]
(33) Cook, M. J.; Katritzky, A. R.; Linda, P.; Tack, R. D. J. Chem. Soc. Perkin Trans. 1972, 2, 1295.
-
[34]
(34) Albert, A.; Barlin, G. B. J. Chem. Soc. 1959, 2384.
-
[35]
(35) Stoyanov, S.; Petkov, I.; Antonov, L.; Stoyanova, T.;Karagiannidis, P.; Aslanidis, P. Can. J. Chem. 1990, 68, 1482.doi: 10.1139/v90-227
-
[36]
(36) Barlin, G. B.; Brown, D. J.; Fenn, M. D. Aust. J. Chem. 1984,37, 2391. doi: 10.1071/CH9842391
-
[37]
(37) Spinner, E. J. Chem. Soc. 1960, 1237.
-
[38]
(38) Lapinski, L.; Nowak, M. J.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1992, 96, 6250. doi: 10.1021/j100194a030
-
[39]
(39) Contreras, J. G.; Alderete, J. B. J. Mol. Struct. -Theochem 1991,231, 257. doi: 10.1016/0166-1280(91)85224-U
-
[40]
(40) Pang, Y. S.;Wang, H. J.; Kim, M. S. J. Mol. Struct. 1998, 441,63. doi: 10.1016/S0022-2860(97)00280-9
-
[41]
(41) Colthup, N. B.; Daly, L. H.;Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press:New York, 1990.
-
[42]
(42) Santhayanarayana, D. N. Vibrational Spectroscopy: Theory and Applications; New Age International Publishers: New Delhi,2004; pp 452-453.
-
[43]
(43) Krishnakumar, V.; Xavier, R. J. Spectrochimica Acta Part A2006, 63, 454. doi: 10.1016/j.saa.2005.05.031
-
[44]
(44) Abdulla, H. I.; El-Bermani, M. F. Spectrochimica Acta Part A2001, 57, 2659. doi: 10.1016/S1386-1425(01)00455-3
-
[45]
(45) Lima, M. C. P.; Coutinho, K.; Canuto, S.; Rocha,W. R. J. Phys. Chem. A 2006, 110, 7253. doi: 10.1021/jp060821b
-
[46]
(46) Penfold, B. R. Acta Crystallogr. 1953, 6, 707. doi: 10.1107/S0365110X5300199X
-
[47]
(47) Ohms, U.; Guth, H.; Kutoglu, A.; Scheringer, C. Acta Crystallogr. Section B 1982, 38, 831. doi: 10.1107/S0567740882004166
-
[48]
(48) Aksnes, D.W.; Kryvi, H. Acta Chim. Scand. 1972, 26, 2255.doi: 10.3891/acta.chem.scand.26-2255
-
[49]
(49) Nowak, M. J.; Rotkowska, H.; Lapinski, L.; Leszczynski, J.;Kwiatkowski, J. S. Spectrochimica Acta Part A 1991, 47, 339.doi: 10.1016/0584-8539(91)80112-V
-
[50]
(50) Gronneberg, T.; Undheim, K. Org. Mass Spectrom. 1972, 6,823. doi: 10.1002/oms.1210060713
-
[51]
(51) Maquestiau, A.; Haverbeke, Y. V.; Meyer, C. D.; Katritzky, A.R.; Cook, M. J.; Page, A. D. Can. J. Chem. 1975, 53, 490. doi: 10.1139/v75-068
-
[52]
(52) Cook, M. J.; El-Abbady, S.; Katritzky, A. R.; Guimon, C.;Pfister-Guillouzo, G. J. Chem. Soc. Perkin Trans. 2 1977, 2,1652.
-
[53]
(53) Zhu, X. M.; Zhang, S. Q.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2005, 109, 3086. doi: 10.1021/jp0444114
-
[54]
(54) Weng, K. F.; Shi, Y.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2006, 110, 851. doi: 10.1021/jp055069d
-
[55]
(55) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[56]
(56) Du, R.; Liu, C.; Zhao, Y. Y.; Pei, K. M.;Wang, H. G.; Zheng, X.M.; Li, M. D.; Xue, J. D.; Phillips, D. L. J. Phys. Chem. B 2011,115, 8266. doi: 10.1021/jp203185a
-
[57]
(57) Sobolewski, A. L.; Domcke,W.; Dedonder-Ladeux, C.; Jouvet,C. Phys. Chem. Chem. Phys. 2002, 4, 1093.
-
[58]
(58) Nowak, M. J.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1991, 95, 2404. doi: 10.1021/j100159a053
-
[59]
(59) Nowak, M. J.; Lapinski, L.; Rostkowska, H.; Les, A.;Adamowicz, L. J. Phys. Chem. 1990, 94, 7406. doi: 10.1021/j100382a018
-
[60]
(60) Rostkowska, H.; Lapinski, L.; Nowak, M. J. J. Phys. Org. Chem. 2010, 23, 56.
-
[61]
(61) Chmura, B.; Rode, M. F.; Sobolewski, A. L.; Lapinski, L.;Nowak, M. J. J. Phys. Chem. A 2008, 112, 13655.
-
[1]
-
-
[1]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[4]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[5]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[6]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[7]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[10]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[11]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[12]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[13]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[14]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[16]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[17]
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
-
[18]
Tianlong Zhang , Jiajun Zhou , Hongsheng Tang , Xiaohui Ning , Yan Li , Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049
-
[19]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[20]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[1]
Metrics
- PDF Downloads(778)
- Abstract views(2312)
- HTML views(5)