Citation: GUO Xiao-Nan, DU Rui, ZHAO Yan-Ying, PEI Ke-Mei, WANG Hui-Gang, ZHENG Xu-Ming. Dynamic Structures of 2-Thiopyrimidone and 2-Thiopyridone in B-Band Absorptions[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1570-1578. doi: 10.3866/PKU.WHXB201204173 shu

Dynamic Structures of 2-Thiopyrimidone and 2-Thiopyridone in B-Band Absorptions

  • Received Date: 7 February 2012
    Available Online: 17 April 2012

    Fund Project: 国家自然科学基金(21033002) (21033002)国家重点基础研究发展规划项目(973) (2007CB815203)资助 (973) (2007CB815203)

  • The dynamic structures of 2-thiopyrimidone (2TPM) and 2-thiopyridone (2TP) in B-band absorptions were studied using the resonance Raman spectroscopy combined with quantum chemical calculations. In gas phase, 2-thiopyrimidine (2MPM, the thiol form) was more stable than 2TPM (the thione form) by ~15.1 kJ·mol-1, whereas in water and acetonitrile 2TPM was more stable than 2MPM by 29.3 and 28.0 kJ·mol-1, respectively. The transition barrier for the ground state proton transfer tautomerization reaction between 2TPM and 2MPM was ~130 kJ·mol-1 in gas phase on the basis of the B3LYP/6-311++ G(d,p) level of theory calculations. The three absorption bands of 2-thiopyrimidone were respectively assigned as πHπL*, πHπL+1*, and πH-1πL* transitions. The vibrational assignments were carried out for the B-band resonance Raman spectra of 2TPM in water and acetonitrile solvents on the basis of the measurements from the Fourier transform (FT)-Raman and Fourier transform-infrared (FT-IR) spectra of 2TPM in solid and/or in solution phases and B3LYP/6-311++G(d,p) computations. The dynamic structures of 2TPM and 2TP were obtained by analysis of the resonance Raman intensity pattern. The differences in the dynamic structures of 2TPM and 2TP reflected differences in the structures of their ππ*/πσ* conical intersection points, and therefore could be used to provide insight into the photoinduced hydrogen-atom detachment-attachment mechanism.

  • 加载中
    1. [1]

      (1) Nimlos, M. R.; Kelley, D. F.; Bernstein, E. R. J. Phys. Chem.1989, 93, 643. doi: 10.1021/j100339a030

    2. [2]

      (2) Held, A.; Pratt, D.W. J. Am. Chem. Soc. 1993, 115, 9708. doi: 10.1021/ja00074a042

    3. [3]

      (3) Matsuda, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 110,8397. doi: 10.1063/1.478748

    4. [4]

      (4) Matsuda, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 2000, 113,573. doi: 10.1063/1.481833

    5. [5]

      (5) Matsuda, Y.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105,3475. doi: 10.1021/jp003272x

    6. [6]

      (6) Nowak, M. J.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1992, 96, 1562. doi: 10.1021/j100183a015

    7. [7]

      (7) Beak, P. Accounts Chem. Res. 1977, 10, 186. doi: 10.1021/ar50113a006

    8. [8]

      (8) Hatherley, L. D.; Brown, R. D.; dfrey, P. D.; Pierlot, A. P.;Caminati,W.; Damiani, D.; Melandri, S.; Favero, L. B. J. Phys. Chem. 1993, 97, 46. doi: 10.1021/j100103a011

    9. [9]

      (9) Sanchez, R.; Giuliano, B. M.; Melandri, S.; Favero, L. B.;Caminati,W. J. Am. Chem. Soc. 2007, 129, 6287. doi: 10.1021/ja070712q

    10. [10]

      (10) Fujimoto, A.; Inuzuka, K.; Shiba, R. Bull. Chem. Soc. Jpn.1981, 54, 2802. doi: 10.1246/bcsj.54.2802

    11. [11]

      (11) Sakota, K.; Tokuhara, S.; Sekiya, H. Chem. Phys. Lett. 2007,448, 159. doi: 10.1016/j.cplett.2007.09.085

    12. [12]

      (12) Florio, G. M.; Gruenloh, C. J.; Quimpo, R. C.; Zwier, T. S.J. Chem. Phys. 2000, 113, 11143. doi: 10.1063/1.1324613

    13. [13]

      (13) Moreno, M.; Miller,W. H. Chem. Phys. Lett. 1990, 171, 475.doi: 10.1016/0009-2614(90)85249-C

    14. [14]

      (14) Sobolewski, A. L. Chem. Phys. Lett. 1993, 211, 82. doi: 10.1016/0009-2614(93)80055-T

    15. [15]

      (15) Barone, V.; Adamo, C. Chem. Phys. Lett. 1994, 226, 399. doi: 10.1016/0009-2614(94)00744-6

    16. [16]

      (16) Barone, V.; Adamo, C. J. Phys. Chem. 1995, 99, 15062. doi: 10.1021/j100041a022

    17. [17]

      (17) Sobolewski, A. L.; Adamowicz, L. J. Phys. Chem. 1996, 100,3933. doi: 10.1021/jp950852z

    18. [18]

      (18) Li, Q. S.; Fang,W. H.; Yu, J. G. J. Phys. Chem. A 2005, 109,3983. doi: 10.1021/jp044498t

    19. [19]

      (19) Wang, J.; Boyd, R. J. J. Phys. Chem. 1996, 100, 16141. doi: 10.1021/jp961295z

    20. [20]

      (20) Del Bene, J. E. J. Am. Chem. Soc. 1995, 117, 1607. doi: 10.1021/ja00110a016

    21. [21]

      (21) Chou, P. T.;Wei, C. Y.; Hung, F. T. J. Phys. Chem. B 1997, 101,9119. doi: 10.1021/jp971824e

    22. [22]

      (22) Dkhissi, A.; Adamowicz, L.; Maes, G. J. Phys. Chem. A 2000,104, 2112. doi: 10.1021/jp9938056

    23. [23]

      (23) Esboui, M.; Nsan u, M.; Jaidane, N.; Ben Lakhdar, Z. Chem. Phys. 2005, 311, 277. doi: 10.1016/j.chemphys.2004.11.022

    24. [24]

      (24) Krebs, C.; Forster,W.;Weiss, C.; Hofmann, H. J. J. Prakt. Chem. 1982, 324, 369. doi: 10.1002/prac.19823240304

    25. [25]

      (25) Esboui, M.; Jaidane, N.; Ben Lakhdar, Z. Chem. Phys. Lett.2006, 430, 195. doi: 10.1016/j.cplett.2006.08.119

    26. [26]

      (26) Lowdin, P. O. Rev. Mol. Phys. 1963, 35, 724. doi: 10.1103/RevModPhys.35.724

    27. [27]

      (27) Pullman, B.; Pullman, A. Adv. Heterocycl. Chem. 1971, 13, 77.doi: 10.1016/S0065-2725(08)60349-9

    28. [28]

      (28) Beak, P.; Covington, J. B.; Smith, S. G. J. Am. Chem. Soc. 1976,98, 8284. doi: 10.1021/ja00441a079

    29. [29]

      (29) Beak, P.; Fry, F. S., Jr.; Lee, J.; Steele, F. J. Am. Chem. Soc.1976, 98, 171. doi: 10.1021/ja00417a027

    30. [30]

      (30) Melandri, S.; Evangelisti, L.; Maris, A.; Caminati,W.; Giuliano,B. M.; Feyer, V.; Prince, K. C.; Coreno, M. J. Am. Chem. Soc.2010, 132, 10269. doi: 10.1021/ja104484b

    31. [31]

      (31) Jones, P. A.; Katritzky, A. R. J. Chem. Soc. 1958, 3610.

    32. [32]

      (32) Katritzky, A. R.; Jones, R. A. J. Chem. Soc. 1960, 2937.

    33. [33]

      (33) Cook, M. J.; Katritzky, A. R.; Linda, P.; Tack, R. D. J. Chem. Soc. Perkin Trans. 1972, 2, 1295.

    34. [34]

      (34) Albert, A.; Barlin, G. B. J. Chem. Soc. 1959, 2384.

    35. [35]

      (35) Stoyanov, S.; Petkov, I.; Antonov, L.; Stoyanova, T.;Karagiannidis, P.; Aslanidis, P. Can. J. Chem. 1990, 68, 1482.doi: 10.1139/v90-227

    36. [36]

      (36) Barlin, G. B.; Brown, D. J.; Fenn, M. D. Aust. J. Chem. 1984,37, 2391. doi: 10.1071/CH9842391

    37. [37]

      (37) Spinner, E. J. Chem. Soc. 1960, 1237.

    38. [38]

      (38) Lapinski, L.; Nowak, M. J.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1992, 96, 6250. doi: 10.1021/j100194a030

    39. [39]

      (39) Contreras, J. G.; Alderete, J. B. J. Mol. Struct. -Theochem 1991,231, 257. doi: 10.1016/0166-1280(91)85224-U

    40. [40]

      (40) Pang, Y. S.;Wang, H. J.; Kim, M. S. J. Mol. Struct. 1998, 441,63. doi: 10.1016/S0022-2860(97)00280-9

    41. [41]

      (41) Colthup, N. B.; Daly, L. H.;Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press:New York, 1990.

    42. [42]

      (42) Santhayanarayana, D. N. Vibrational Spectroscopy: Theory and Applications; New Age International Publishers: New Delhi,2004; pp 452-453.

    43. [43]

      (43) Krishnakumar, V.; Xavier, R. J. Spectrochimica Acta Part A2006, 63, 454. doi: 10.1016/j.saa.2005.05.031

    44. [44]

      (44) Abdulla, H. I.; El-Bermani, M. F. Spectrochimica Acta Part A2001, 57, 2659. doi: 10.1016/S1386-1425(01)00455-3

    45. [45]

      (45) Lima, M. C. P.; Coutinho, K.; Canuto, S.; Rocha,W. R. J. Phys. Chem. A 2006, 110, 7253. doi: 10.1021/jp060821b

    46. [46]

      (46) Penfold, B. R. Acta Crystallogr. 1953, 6, 707. doi: 10.1107/S0365110X5300199X

    47. [47]

      (47) Ohms, U.; Guth, H.; Kutoglu, A.; Scheringer, C. Acta Crystallogr. Section B 1982, 38, 831. doi: 10.1107/S0567740882004166

    48. [48]

      (48) Aksnes, D.W.; Kryvi, H. Acta Chim. Scand. 1972, 26, 2255.doi: 10.3891/acta.chem.scand.26-2255

    49. [49]

      (49) Nowak, M. J.; Rotkowska, H.; Lapinski, L.; Leszczynski, J.;Kwiatkowski, J. S. Spectrochimica Acta Part A 1991, 47, 339.doi: 10.1016/0584-8539(91)80112-V

    50. [50]

      (50) Gronneberg, T.; Undheim, K. Org. Mass Spectrom. 1972, 6,823. doi: 10.1002/oms.1210060713

    51. [51]

      (51) Maquestiau, A.; Haverbeke, Y. V.; Meyer, C. D.; Katritzky, A.R.; Cook, M. J.; Page, A. D. Can. J. Chem. 1975, 53, 490. doi: 10.1139/v75-068

    52. [52]

      (52) Cook, M. J.; El-Abbady, S.; Katritzky, A. R.; Guimon, C.;Pfister-Guillouzo, G. J. Chem. Soc. Perkin Trans. 2 1977, 2,1652.

    53. [53]

      (53) Zhu, X. M.; Zhang, S. Q.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2005, 109, 3086. doi: 10.1021/jp0444114

    54. [54]

      (54) Weng, K. F.; Shi, Y.; Zheng, X. M.; Phillips, D. L. J. Phys. Chem. A 2006, 110, 851. doi: 10.1021/jp055069d

    55. [55]

      (55) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.

    56. [56]

      (56) Du, R.; Liu, C.; Zhao, Y. Y.; Pei, K. M.;Wang, H. G.; Zheng, X.M.; Li, M. D.; Xue, J. D.; Phillips, D. L. J. Phys. Chem. B 2011,115, 8266. doi: 10.1021/jp203185a

    57. [57]

      (57) Sobolewski, A. L.; Domcke,W.; Dedonder-Ladeux, C.; Jouvet,C. Phys. Chem. Chem. Phys. 2002, 4, 1093.

    58. [58]

      (58) Nowak, M. J.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L.J. Phys. Chem. 1991, 95, 2404. doi: 10.1021/j100159a053

    59. [59]

      (59) Nowak, M. J.; Lapinski, L.; Rostkowska, H.; Les, A.;Adamowicz, L. J. Phys. Chem. 1990, 94, 7406. doi: 10.1021/j100382a018

    60. [60]

      (60) Rostkowska, H.; Lapinski, L.; Nowak, M. J. J. Phys. Org. Chem. 2010, 23, 56.

    61. [61]

      (61) Chmura, B.; Rode, M. F.; Sobolewski, A. L.; Lapinski, L.;Nowak, M. J. J. Phys. Chem. A 2008, 112, 13655.


  • 加载中
    1. [1]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    18. [18]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    19. [19]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    20. [20]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

Metrics
  • PDF Downloads(778)
  • Abstract views(2388)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return