Citation: ZHANG Jun-Jun, ZHANG Zhen-Hua, GUO Chao, LI Jie, DENG Xiao-Qing. Electronic Transport Properties for a Zigzag-Edged Triangular Graphene[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1701-1706. doi: 10.3866/PKU.WHXB201204172
-
Based on the density functional theory and the non-equilibrium Green?s function method, the electronic transport properties of zigzag-edged triangular graphene were studied systematically. The results revealed that the current-voltage (I-V) characteristics and rectifying effects were closely related to the geometric size and the type of atoms terminated at the edges of triangular graphene. In the case of Hand S- terminated edges, a small triangular graphene had a large current but with a small rectifying ratio. Although the current increased, the rectifying behavior was lowered when H atoms at the edges of the structure were replaced by O atoms. Deeper analysis demonstrated that such a rectification was caused by the asymmetry in the spatial distribution of the frontier orbitals and an asymmetric movement on the molecular-level in triangular graphene under positive and negative biases. It is of great significance that our investigations develop a thorough understanding of the basic physical properties of a triangular graphene.
-
-
[1]
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[2]
(2) Zhang, Y. B.; Tan, Y.W.; Stormer, H. L.; Kim, P. Nature 2005,438, 201. doi: 10.1038/nature04235
-
[3]
(3) He, J.; Chen, K. Q.; Fan, Z. Q.; Tang, L. M.; Hu,W. P. Appl. Phys. Lett. 2010, 97, 193305. doi: 10.1063/1.3515921
-
[4]
(4) Zeng, J.; Chen, K. Q.; He, J.; Fan, Z. Q.; Zhang, X. J. J. Appl. Phys. 2011, 109, 124502. doi: 10.1063/1.3600067
-
[5]
(5) Ouyang, F.; Peng, S.; Liu, Z.; Liu, Z. ACS Nano 2011, 5, 4023.doi: 10.1021/nn200580w
-
[6]
(6) Ouyang, F.; Xiao, J.; Guo, R.; Zhang, H.; Xu, H. Nanotechnology2009, 20, 055202. doi: 10.1088/0957-4484/20/5/055202
-
[7]
(7) Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; vanWees, B. J. Nature 2007, 448, 571. doi: 10.1038/nature06037
-
[8]
(8) Ci, L.; Xu, Z.;Wang, L.; Gao,W.; Ding, F.; Kelly, K. F.;Yakobson, B. I.; Ajayan, P. M. Nano Res. 2008, 1, 116. doi: 10.1007/s12274-008-8020-9
-
[9]
(9) Sun, D. L.; Peng, S. L.; Ouyang, J.; Ouyang, F. P. Acta Phys. - Chim. Sin. 2011, 27, 1103. [孙大立, 彭盛霖, 欧阳俊, 欧阳方平. 物理化学学报, 2011, 27, 1103.] doi: 10.3866/PKU.WHXB20110521
-
[10]
(10) Xu, N.; Kong, F. J.;Wang, Y. Z. Acta Phys. -Chim. Sin. 2011,27, 559. [徐宁, 孔凡杰, 王延宗. 物理化学学报, 2011, 27,559.] doi: 10.3866/PKU.WHXB20110305
-
[11]
(11) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.] doi: 10.3866/PKU.WHXB20110224
-
[12]
(12) Liu, B.; Sun, H. J.; Peng, T. J. Acta Phys. -Chim. Sin. 2012, 28,799. [刘波, 孙红娟, 彭同江. 物理化学学报, 2012, 28,799.] doi: 10.3866/PKU.WHXB201202012
-
[13]
(13) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S.G. Acta Phys. -Chim. Sin. 2011, 27, 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27,858.] doi: 10.3866/PKU.WHXB20110411
-
[14]
(14) Du, X.; Skachko, I.; Barker, A.; Andre, E. Y. Nat. Nanotechnol.2008, 3, 491. doi: 10.1038/nnano.2008.199
-
[15]
(15) Son, Y.W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97,216803. doi: 10.1103/PhysRevLett.97.216803
-
[16]
(16) Ezawa, M. Phys. Rev. B 2006, 73, 045432. doi: 10.1103/PhysRevB.73.045432
-
[17]
(17) Ezawa, M. Phys. Rev. B 2008, 77, 155411. doi: 10.1103/PhysRevB.77.155411
-
[18]
(18) Ezawa, M. Phys. Rev. B 2007, 76, 245415. doi: 10.1103/PhysRevB.76.245415
-
[19]
(19) Ezawa, M. Eur. Phys. J. B 2009, 67, 543. doi: 10.1140/epjb/e2009-00041-7
-
[20]
(20) Ezawa, M. Physica E 2010, 42 , 703.
-
[21]
(21) Taylor, J.; Guo, H.;Wang, J. Phys. Rev. B 2001, 63, 245407.
-
[22]
(22) Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro, K.Phys. Rev. B 2002, 65, 165401.
-
[23]
(23) Landauer, R. Philos. Mag. 1970, 21, 863. doi: 10.1080/14786437008238472
-
[24]
(24) Zhang, Z. H.; Deng, X. Q.; Tan, X. Q.; Qiu, M.; Pan, J. B. Appl. Phys. Lett. 2010, 97, 183105. doi: 10.1063/1.3506485
-
[25]
(25) Zhang, Z. H.; Yang, Z.; Yuan, J. H.; Zhang, H.; Deng, X. Q.;Qiu, M. J. Chem. Phys. 2008, 129, 094702. doi: 10.1063/1.2970073
-
[26]
(26) Zhao, J.; Yu, C.;Wang, N.; Liu, H. J. Phys. Chem. C 2010, 114,4135. doi: 10.1021/jp905713a
-
[27]
(27) Liu, H.;Wang, N.; Li, P.; Yin, X.; Yu, C.; Gao, N.; Zhao, J.Phys. Chem. Chem. Phys. 2011, 13, 1301.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[6]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[7]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[8]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[11]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[12]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[13]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
-
[16]
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
-
[17]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[18]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[19]
Qiuyu Xiang , Chunhua Qu , Guang Xu , Yafei Yang , Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094
-
[20]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[1]
Metrics
- PDF Downloads(812)
- Abstract views(2193)
- HTML views(5)