Citation: WANG Yan-Hong, CHEN Yu-Juan, BAO Ling, LANG Xue-Mei, FAN Shuan-Shi. Molecular Dynamics Simulation of CH4 Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1683-1690. doi: 10.3866/PKU.WHXB201204113 shu

Molecular Dynamics Simulation of CH4 Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)

  • Received Date: 7 December 2011
    Available Online: 11 April 2012

    Fund Project: 国家自然科学基金(51106054) (51106054) 广东省高层次人才项目和国家重点基础研究发展计划(973) (2009CB219504-03)资助 (973) (2009CB219504-03)

  • Molecular dynamics simulations were carried out to study the decomposition of CH4 hydrate in the presence of poly(2-ethyl-2-oxazoline) (PEtO) at different concentrations, including 1.25% , 2.50%, and 6.06% (w, mass fraction). The simulation system was composed of a CH4 hydrate crystal and PEtO, which contained a 2×2×2 supercell of CH4 hydrate crystal and PEtO polymer. System configurations showed that hydrogen bonding networks between water molecules making up the main framework of the hydrate cages were distorted in the presence of the PEtO polymer. Final configurations in all of the systems were completely collapsed. Radial distribution functions of the oxygen atoms, mean square displacements, and diffusion coefficients of water molecules were applied to compare the effect of different PEtO concentrations on the CH4 hydrate. Within a certain concentration range, higher concentrations led to a better inhibition effect. It was confirmed that PEtO is a type of prospective low dosage inhibitor with biodegradability. The decomposition mechanism involves the absorption of the PEtO polymer onto the surface of the hydrate crystal, with its active functional group (N ―C=O) forming hydrogen bonds with water molecules in the hydrate and decomposing the hydrate surface. PEtO continued to decompose the surface layer of hydrate, resulting ultimately in the collapse of the hydrate cages.

  • 加载中
    1. [1]

      (1) Sum, A. K.; Koh, C. A.; Sloan, E. D. Industrial & Engineering Chemistry Research 2009, 48, 7457. doi: 10.1021/ie900679m

    2. [2]

      (2) Long, J. P.; Sloan, E. D. Int. J. Thermophys. 1996, 17, 1. doi: 10.1007/BF01448204

    3. [3]

      (3) Hammerschmidt, E. G. Industrial & Engineering Chemistry1934, 26, 851.

    4. [4]

      (4) Rodger, P. M.; Forester, T. R.; Smith,W. Fluid Phase Equilib.1996, 116, 326. doi: 10.1016/0378-3812(95)02903-6

    5. [5]

      (5) Carver, T. J.; Drew, M. G. B.; Rodger, P. M. Phys. Chem. Chem. Phys. 1999, 1, 1807.

    6. [6]

      (6) Storr, M. T.; Taylor, P. C.; Monfort, J. P.; Rodger, P. M. J. Am. Chem. Soc. 2004, 126, 1569. doi: 10.1021/ja035243g

    7. [7]

      (7) Hawtin, R.W.; Rodger, P. M. J. Mater. Chem. 2006, 16, 1934.doi: 10.1039/b600285b

    8. [8]

      (8) Moon, C.; Hawtin, R.W.; Rodger, P. M. Faraday Discuss. 2007,136, 367. doi: 10.1039/b618194p

    9. [9]

      (9) Zhang, J.; Hawtin, R.W.; Yang, Y.; Nakagava, E.; Rivero, M.;Choi, S. K.; Rodger, P. M. J. Phys. Chem. B 2008, 112, 10608.doi: 10.1021/jp076904p

    10. [10]

      (10) Kvamme, B.; Huseby, G.; Forrisdahl, O. K. Mol. Phys. 1997,90, 979.

    11. [11]

      (11) Kvamme, B.; Kuznetsova, T.; Aasoldsen, K. J. Mol. Graph. Model. 2005, 23, 13.

    12. [12]

      (12) Kuznetsova, T.; Sapronova, A.; Kvamme, B.; Johannsen, K.;Haug, J. Macromol. Symp. 2010, 287, 168. doi: 10.1002/masy.201050124

    13. [13]

      (13) Wan, L. H.; Yan, K. F.; Li, X. S.; Fan, S. S. Acta Phys. -Chim. Sin. 2009, 25, 486. [万丽华, 颜克凤, 李小森, 樊栓狮. 物理化学学报, 2009, 25, 486.] doi: 10.3866/PKU.WHXB20090315

    14. [14]

      (14) Balbuena, D. A. G.; Balbuena, P. B. J. Phys. Chem. C 2007, 111,15554. doi: 10.1021/jp071959c

    15. [15]

      (15) Anderson, B. J.; Radhakrishnan, R.; Tester, J.W.; Trout, B. L.Abstr. Am. Chem. Soc. 2005, 229, U593.

    16. [16]

      (16) Zhang, M.; Anderson, B. J.;Warzinski, R. P.; Holder, G. D.Molecular Dynamics Simulation of Hydrate Lattice Distortion.Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem., Salt Lake City,2009; p 237.

    17. [17]

      (17) Colle, K. S.; Oelfke, R. H.; Kelland, M. A. Polymer contg.amide unit|used for inhibiting formation of gas hydrate(s) in e.g.oil or gas pipeline; GB Patent 2301824-A, 1996-12-18.

    18. [18]

      (18) Karaaslan, U.; Parlaktuna, M. Energy & Fuels 2002, 16, 1387.doi: 10.1021/ef0200222

    19. [19]

      (19) Geng, C. Y.;Wen, H.; Zhou, H. J. Phys. Chem. A 2009, 113,5463. doi: 10.1021/jp811474m

    20. [20]

      (20) Kirchner, M. T.; Boese, R.; Billups,W. E.; Norman, L. R. J. Am. Chem. Soc. 2004, 126, 9407. doi: 10.1021/ja049247c

    21. [21]

      (21) McMullan, R. K.; Jeffrey, G. A. J. Chem. Phys. 1965, 42, 2725.doi: 10.1063/1.1703228

    22. [22]

      (22) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. doi: 10.1021/j100308a038

    23. [23]

      (23) Materials Studio, Version 4.4; Accelrys Software Inc: SanDie , 2008.

    24. [24]

      (24) Tse, J. S.; Klein, M. L.; McDonald, I. R. J. Phys. Chem. 1983,87, 4198. doi: 10.1021/j100244a044

    25. [25]

      (25) Moon, C.; Taylor, P. C.; Rodger, P. M. J. Am. Chem. Soc. 2003,125, 4706. doi: 10.1021/ja028537v

    26. [26]

      (26) Kelland, M. A. J. Appl. Polym. Sci. 2011, 121, 2282. doi: 10.1002/app.33942

    27. [27]

      (27) Ajiro, H.; Takemoto, Y.; Akashi, M.; Chua, P. C.; Kelland, M. A.Energy & Fuels 2010, 24, 6400. doi: 10.1021/ef101107r

    28. [28]

      (28) Chen, Y. J.;Wang, Y. H.; Fan, S. S.; Lang, X. M. Acta Chimica Sinica 2010, 68, 2253. [陈玉娟, 王燕鸿, 樊栓狮, 郎雪梅.化学学报, 2010, 68, 2253.]


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    7. [7]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

    10. [10]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    13. [13]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    17. [17]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    18. [18]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(799)
  • Abstract views(2362)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return