Citation: FENG Li-Xia, JIN Ling-Xia, WANG Wei-Na, WANG Wen-Liang. Mechanism and Kinetics of the Hydrogen Abstraction Reaction of C2H3 with CH3F[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1623-1629. doi: 10.3866/PKU.WHXB201204112 shu

Mechanism and Kinetics of the Hydrogen Abstraction Reaction of C2H3 with CH3F

  • Received Date: 9 February 2012
    Available Online: 11 April 2012

    Fund Project: 国家自然科学基金(20873079)资助项目 (20873079)

  • A dual-level direct dynamics method was employed to study the hydrogen abstraction reaction of C2H3 with CH3F. The calculated potential barriers (ΔE) of reaction channels R1, R2, and R3 are 43.2, 43.9, and 44.1 kJ·mol-1, respectively, and the reaction energy is -38.2 kJ·mol-1 at the QCISD(T)/6-311++ G(d, p)//B3LYP/6-311G(d, p) level. In addition, the rate constants of the reaction were evaluated by means of the conventional transition-state theory (TST) and canonical variational transition-state theory (CVT) with or without small curvature tunneling corrections (SCT) over a wide temperature range of 200-3000 K. The results indicate that the rate constants of the three hydrogen abstraction reaction channels exhibit a positive temperature dependence, in which the variational effect is negligible for all the channels, whereas the tunneling effect is considerable at lower temperatures. Moreover, the reaction R1 is the dominant channel. Reaction R2 competes kinetically with R1 as the temperature increases, whereas the contribution from R3 is small.

  • 加载中
    1. [1]

      (1) Farman, J. D.; Gardiner, B. G.; Shanklin, J. D. Nature 1985,315, 207. doi: 10.1038/315207a0

    2. [2]

      (2) Solomon, S. Nature 1990, 347, 347.

    3. [3]

      (3) Zhou, X.; Zhou, B. Chin. J. Chem. 2011, 29, 1335. doi: 10.1002/cjoc.201180251

    4. [4]

      (4) Wang, L.; Zhao, Y.; Zhang, J.; Dai, Y.; Zhang, J. Theor. Chem. Acc. 2011, 128, 183. doi: 10.1007/s00214-010-0813-8

    5. [5]

      (5) Han,W.; Kennedy, E. M.; Mackie, J. C.; Dlu rski, B. Z. Ind. Eng. Chem . Res. 2010, 49, 8406. doi: 10.1021/ie100349x

    6. [6]

      (6) Sun, H.; He, H.; Pan, Y.; Pan, X.; Li, Z.;Wang, R. Chemical Physics Letters 2008, 450, 186. doi: 10.1016/j.cplett.2007.11.003

    7. [7]

      (7) Ali, M. A.; Rajakumar, B. J. Mol. Struct. -Theochem 2010, 949,73. doi: 10.1016/j.theochem.2010.03.006

    8. [8]

      (8) Gao, H.;Wang, Y.;Wan, S.; Liu, J.; Sun, C. J. Mol. Struct. -Theochem 2009, 913, 107. doi: 10.1016/j.theochem.2009.07.024

    9. [9]

      (9) Zhang, L.; Li, S. J. Mol. Struct. -Theochem 2008, 869, 6. doi: 10.1016/j.theochem.2008.08.012

    10. [10]

      (10) nzález-Lafont, À.; Lluch, J. M.; Varela-álvarez, A.; Sordo, J.A. J. Phys. Chem. B 2008, 112, 328. doi: 10.1021/jp075298v

    11. [11]

      (11) Taghikhani, M.; Parsafar, G. A. J. Phys. Chem. A 2007, 111,8095. doi: 10.1021/jp072403s

    12. [12]

      (12) Yang, J.; Zhang, S.W.; Li, Q. S. Chemical Journal of Chinese Universities 2007, 28, 1975. [杨静, 张绍文, 李前树. 高等学校化学学报, 2007, 28, 1975.] doi: 10.3321/j.issn:0251-0790.2007.10.040

    13. [13]

      (13) Zhang, L.; Li, S. J. Mol. Struct. -Theochem 2009, 901, 38.10.1016/j.theochem.2008.12.044

    14. [14]

      (14) Song, C.; Tian, Z.; Li, Q.; He, T. J. Mol. Struct. -Theochem2009, 910, 126. doi: 10.1016/j.theochem.2009.06.027

    15. [15]

      (15) Han,W.; Kennedy, E. M.; Kundu, S. K.; Mackie J. C.; Adesina,A. A.; Dlu rski, B. Z. Journal of Fluorine Chemistry 2010,131 (7), 751.

    16. [16]

      (16) Han,W.; Kennedy, E. M.; Mackie J. C.; Dlu rski, B. Z.Journal of Hazardous Materials 2010, 180, 181. doi: 10.1016/j.jhazmat.2010.04.011

    17. [17]

      (17) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.;Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.;Walker, R.W.;Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411. doi: 10.1063/1.555908

    18. [18]

      (18) Monks, P. S.; Nesbitt, F. L.; Payne,W. A.; Scanlon, M.; Stief, L.J.; Shallcross, D. E. J. Phys. Chem. 1995, 99 (47), 17151.19) Payne,W. A.; Monks, P. S.; Nesbitt, F. L.; Stief, L. J. J. Chem. Phys. 1996, 104, 9808. doi: 10.1063/1.471740

    19. [19]

      (20) Feng, C. J.; Zhang,W. C.; Du, B. N.; Mu, L. L. J. Mol. Struct. -Theochem 2007, 847, 79. doi: 10.1016/j.theochem.2007.09.001

    20. [20]

      (21) Fahr, A.; Laufer, A. H.; Tardy, D. C. J. Phys. Chem. A 1999,103, 8433.

    21. [21]

      (22) Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chimica Sinica 2008, 66 (22), 2499. [王新磊, 于锋, 谢丹, 刘世林, 周晓国. 化学学报, 2008, 66 (22), 2499.]

    22. [22]

      (23) Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995,103 (9), 3440.

    23. [23]

      (24) Knyazev, V. D.; Bencsura, Á.; Stoliarov, S. I.; Slagle, I. R. J. Phys. Chem. 1996, 100, 11346.

    24. [24]

      (25) Li, Q. S.; Lu, R. H.;Wang, C. Y. J. Mol. Struct. -Theochem2004, 668, 35. doi: 10.1016/j.theochem.2003.10.014

    25. [25]

      (26) Mebel, A. M.; Diau, E.W. G.; Lin, M. C.; Morokuma, K. J. Am. Chem. Soc. 1996, 118 (40), 9759.

    26. [26]

      (27) Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1995, 99, 2247.

    27. [27]

      (28) Wang, H.; Liu, J. X.;Wang, B. S.; Kong, F. A. Acta Phys.-Chim. Sin. 2000, 16 (8), 674. [王惠, 刘建勋, 王宝山, 孔繁敖.物理化学学报, 2000, 16 (8), 674.] doi: 10.3866/PKU.WHXB20000801

    28. [28]

      (29) Oguchi, T.; Sato, Y.; Matsui, H. Chemical Physics Letters 2009,472, 181. doi: 10.1016/j.cplett.2009.03.012

    29. [29]

      (30) Wang, L. C.;Wang, X.; Tian, A. M. Acta Chimica Sinica 2008,60 (3), 457. [李来才, 王欣, 田安民, 化学学报, 2008, 60 (3), 457.]

    30. [30]

      (31) Benson, S.W. Int. J. Chem. Kinet. 1994, 26, 997. doi: 10.1002/kin.550261005

    31. [31]

      (32) Boullart,W.; Nguyen, M. T.; Peeters, J. J. Phys. Chem. 1994, 98

    32. [32]

      (33), 8036.

    33. [33]

      (33) Feng,W. H.;Wang, B. S.;Wang, H.; Kong, F. A. Acta Phys. -Chim. Sin. 2000, 16 (9), 776. [冯文辉, 王宝山, 王惠, 孔繁敖. 物理化学学报, 2000, 16 (9), 776.] doi: 10.3866/PKU.WHXB20000903

    34. [34]

      (34) Huang, C. S.; Zhu, Z. Q.; Ran, Q.; Chen, C. X.; Chen, Y. Acta Phys. -Chim. Sin. 2003, 19 (1), 51. [黄存顺, 朱志强, 冉琴,陈从香, 陈旸. 物理化学学报, 2003, 19 (1), 51.] doi: 10.3866/PKU.WHXB20030112

    35. [35]

      (35) Shestov, A. A.; Popov, K. V.; Slagle, I. R.; Knyazev, V. D.Chemical Physics Letters 2005, 408, 339. doi: 10.1016/j.cplett.2005.04.057

    36. [36]

      (36) ldsmith, C. F.; Ismail, H.; Abel, P. R.; Green,W. H.Proceedings of the Combustion Institute 2009, 32, 139. doi: 10.1016/j.proci.2008.06.142

    37. [37]

      (37) Muszyńska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N.J. Phys. Chem. A 2009, 113, 8327. doi: 10.1021/jp903762x

    38. [38]

      (38) Feng, S.; Duan,W. Z.; Liu, Q.; Liu, F. L. J. Mol. Struct. -Theochem 2009, 897, 1. doi: 10.1016/j.theochem.2008.10.019

    39. [39]

      (39) Burgess, D. R., Jr.; Zachariah, M. R.; Tsang,W.;Westmoreland,P. R. Prog. Energy Combust. Sci. 1996, 21, 453.

    40. [40]

      (40) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    41. [41]

      (41) Thiesemann, H.; Clifford, E. P.; Taatjes, C. A.; Klippenstein, S.J. J. Phys. Chem. A 2001, 105, 5393.

    42. [42]

      (42) Chuang, Y. Y.; Corchado, J. C.; Truhlar, D. G. J. Phys. Chem. A1999, 103, 1140.

    43. [43]

      (43) Chuang, Y. Y.; Corchado, J. C.; Fast, P. L.; et al. Polyrate,Version 8.2; University of Minnesota: Minneapolis, 1999.

    44. [44]

      (44) JANAF Thermochemical Tables, 2nd ed.; Stull, D. R., Prohet, H.Eds. National Standard Reference Data Series N0 37, NationalBureau of Standards, US vernment, Printing Office:Washington, DC, 1971.

    45. [45]

      (45) Duncan, J. L. Mol. Phys. 1974, 28, 1177. doi: 10.1080/00268977400102501

    46. [46]

      (46) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. doi: 10.1021/ja01607a027

    47. [47]

      (47) Fahr, A.; Laufer, A. H. J. Phys. Chem. 1988, 92 (29), 7229.

    48. [48]

      (48) Ira, N. L. Molecular Spectroscopy;Wiley: New York, 1975.

    49. [49]

      (49) Olleta, A. C.; Taccone, R. A. J. Mol. Struct. -Theochem 2000,507, 25. doi: 10.1016/S0166-1280(99)00346-2

    50. [50]

      (50) Liu, J. Y.; Li, Z. S.; Dai, Z.W.; Zhang, G.; Sun, C. C. Chem. Phys. 2004, 296, 43. doi: 10.1016/j.chemphys.2003.09.028

    51. [51]

      (51) Zhang, Q. Z.; Zhang, R. Q.; Gu, Y. S. J. Phys. Chem. A 2004,108, 1064. doi: 10.1021/jp036446u

    52. [52]

      (52) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994,98 (11), 2744.

    53. [53]

      (53) Kolesov, V. P. Russ. Chem. Rev. 1978, 47, 1145.

    54. [54]

      (54) Pickard, J. M.; Rodgers, A. S. Int. J. Chem. Kinet. 1983, 15,569. doi: 10.1002/kin.550150607

    55. [55]

      (55) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Corne11University Press: Ithaca, NY, 1960; p 260.

    56. [56]

      (56) Martell, J. M.; Boyd, R. J. J. Phys. Chem. 1995, 99, 13402. doi: 10.1021/j100036a014

    57. [57]

      (57) Garrett, B. C.; Truhlar, D. G. J. Am. Chem. Soc. 1979, 101 (16),4534.


  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    4. [4]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    5. [5]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    6. [6]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    11. [11]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    15. [15]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(748)
  • Abstract views(1784)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return