Citation: FENG Li-Xia, JIN Ling-Xia, WANG Wei-Na, WANG Wen-Liang. Mechanism and Kinetics of the Hydrogen Abstraction Reaction of C2H3 with CH3F[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1623-1629. doi: 10.3866/PKU.WHXB201204112
-
A dual-level direct dynamics method was employed to study the hydrogen abstraction reaction of C2H3 with CH3F. The calculated potential barriers (ΔE≠) of reaction channels R1, R2, and R3 are 43.2, 43.9, and 44.1 kJ·mol-1, respectively, and the reaction energy is -38.2 kJ·mol-1 at the QCISD(T)/6-311++ G(d, p)//B3LYP/6-311G(d, p) level. In addition, the rate constants of the reaction were evaluated by means of the conventional transition-state theory (TST) and canonical variational transition-state theory (CVT) with or without small curvature tunneling corrections (SCT) over a wide temperature range of 200-3000 K. The results indicate that the rate constants of the three hydrogen abstraction reaction channels exhibit a positive temperature dependence, in which the variational effect is negligible for all the channels, whereas the tunneling effect is considerable at lower temperatures. Moreover, the reaction R1 is the dominant channel. Reaction R2 competes kinetically with R1 as the temperature increases, whereas the contribution from R3 is small.
-
Keywords:
-
C2H3
, - CH3F,
- Hydrogen abstraction reaction,
- QCISD(T)//B3LYP,
- Rate constant
-
-
-
[1]
(1) Farman, J. D.; Gardiner, B. G.; Shanklin, J. D. Nature 1985,315, 207. doi: 10.1038/315207a0
-
[2]
(2) Solomon, S. Nature 1990, 347, 347.
-
[3]
(3) Zhou, X.; Zhou, B. Chin. J. Chem. 2011, 29, 1335. doi: 10.1002/cjoc.201180251
-
[4]
(4) Wang, L.; Zhao, Y.; Zhang, J.; Dai, Y.; Zhang, J. Theor. Chem. Acc. 2011, 128, 183. doi: 10.1007/s00214-010-0813-8
-
[5]
(5) Han,W.; Kennedy, E. M.; Mackie, J. C.; Dlu rski, B. Z. Ind. Eng. Chem . Res. 2010, 49, 8406. doi: 10.1021/ie100349x
-
[6]
(6) Sun, H.; He, H.; Pan, Y.; Pan, X.; Li, Z.;Wang, R. Chemical Physics Letters 2008, 450, 186. doi: 10.1016/j.cplett.2007.11.003
-
[7]
(7) Ali, M. A.; Rajakumar, B. J. Mol. Struct. -Theochem 2010, 949,73. doi: 10.1016/j.theochem.2010.03.006
-
[8]
(8) Gao, H.;Wang, Y.;Wan, S.; Liu, J.; Sun, C. J. Mol. Struct. -Theochem 2009, 913, 107. doi: 10.1016/j.theochem.2009.07.024
-
[9]
(9) Zhang, L.; Li, S. J. Mol. Struct. -Theochem 2008, 869, 6. doi: 10.1016/j.theochem.2008.08.012
-
[10]
(10) nzález-Lafont, À.; Lluch, J. M.; Varela-álvarez, A.; Sordo, J.A. J. Phys. Chem. B 2008, 112, 328. doi: 10.1021/jp075298v
-
[11]
(11) Taghikhani, M.; Parsafar, G. A. J. Phys. Chem. A 2007, 111,8095. doi: 10.1021/jp072403s
-
[12]
(12) Yang, J.; Zhang, S.W.; Li, Q. S. Chemical Journal of Chinese Universities 2007, 28, 1975. [杨静, 张绍文, 李前树. 高等学校化学学报, 2007, 28, 1975.] doi: 10.3321/j.issn:0251-0790.2007.10.040
-
[13]
(13) Zhang, L.; Li, S. J. Mol. Struct. -Theochem 2009, 901, 38.10.1016/j.theochem.2008.12.044
-
[14]
(14) Song, C.; Tian, Z.; Li, Q.; He, T. J. Mol. Struct. -Theochem2009, 910, 126. doi: 10.1016/j.theochem.2009.06.027
-
[15]
(15) Han,W.; Kennedy, E. M.; Kundu, S. K.; Mackie J. C.; Adesina,A. A.; Dlu rski, B. Z. Journal of Fluorine Chemistry 2010,131 (7), 751.
-
[16]
(16) Han,W.; Kennedy, E. M.; Mackie J. C.; Dlu rski, B. Z.Journal of Hazardous Materials 2010, 180, 181. doi: 10.1016/j.jhazmat.2010.04.011
-
[17]
(17) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.;Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.;Walker, R.W.;Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411. doi: 10.1063/1.555908
-
[18]
(18) Monks, P. S.; Nesbitt, F. L.; Payne,W. A.; Scanlon, M.; Stief, L.J.; Shallcross, D. E. J. Phys. Chem. 1995, 99 (47), 17151.19) Payne,W. A.; Monks, P. S.; Nesbitt, F. L.; Stief, L. J. J. Chem. Phys. 1996, 104, 9808. doi: 10.1063/1.471740
-
[19]
(20) Feng, C. J.; Zhang,W. C.; Du, B. N.; Mu, L. L. J. Mol. Struct. -Theochem 2007, 847, 79. doi: 10.1016/j.theochem.2007.09.001
-
[20]
(21) Fahr, A.; Laufer, A. H.; Tardy, D. C. J. Phys. Chem. A 1999,103, 8433.
-
[21]
(22) Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chimica Sinica 2008, 66 (22), 2499. [王新磊, 于锋, 谢丹, 刘世林, 周晓国. 化学学报, 2008, 66 (22), 2499.]
-
[22]
(23) Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995,103 (9), 3440.
-
[23]
(24) Knyazev, V. D.; Bencsura, Á.; Stoliarov, S. I.; Slagle, I. R. J. Phys. Chem. 1996, 100, 11346.
-
[24]
(25) Li, Q. S.; Lu, R. H.;Wang, C. Y. J. Mol. Struct. -Theochem2004, 668, 35. doi: 10.1016/j.theochem.2003.10.014
-
[25]
(26) Mebel, A. M.; Diau, E.W. G.; Lin, M. C.; Morokuma, K. J. Am. Chem. Soc. 1996, 118 (40), 9759.
-
[26]
(27) Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1995, 99, 2247.
-
[27]
(28) Wang, H.; Liu, J. X.;Wang, B. S.; Kong, F. A. Acta Phys.-Chim. Sin. 2000, 16 (8), 674. [王惠, 刘建勋, 王宝山, 孔繁敖.物理化学学报, 2000, 16 (8), 674.] doi: 10.3866/PKU.WHXB20000801
-
[28]
(29) Oguchi, T.; Sato, Y.; Matsui, H. Chemical Physics Letters 2009,472, 181. doi: 10.1016/j.cplett.2009.03.012
-
[29]
(30) Wang, L. C.;Wang, X.; Tian, A. M. Acta Chimica Sinica 2008,60 (3), 457. [李来才, 王欣, 田安民, 化学学报, 2008, 60 (3), 457.]
-
[30]
(31) Benson, S.W. Int. J. Chem. Kinet. 1994, 26, 997. doi: 10.1002/kin.550261005
-
[31]
(32) Boullart,W.; Nguyen, M. T.; Peeters, J. J. Phys. Chem. 1994, 98
-
[32]
(33), 8036.
-
[33]
(33) Feng,W. H.;Wang, B. S.;Wang, H.; Kong, F. A. Acta Phys. -Chim. Sin. 2000, 16 (9), 776. [冯文辉, 王宝山, 王惠, 孔繁敖. 物理化学学报, 2000, 16 (9), 776.] doi: 10.3866/PKU.WHXB20000903
-
[34]
(34) Huang, C. S.; Zhu, Z. Q.; Ran, Q.; Chen, C. X.; Chen, Y. Acta Phys. -Chim. Sin. 2003, 19 (1), 51. [黄存顺, 朱志强, 冉琴,陈从香, 陈旸. 物理化学学报, 2003, 19 (1), 51.] doi: 10.3866/PKU.WHXB20030112
-
[35]
(35) Shestov, A. A.; Popov, K. V.; Slagle, I. R.; Knyazev, V. D.Chemical Physics Letters 2005, 408, 339. doi: 10.1016/j.cplett.2005.04.057
-
[36]
(36) ldsmith, C. F.; Ismail, H.; Abel, P. R.; Green,W. H.Proceedings of the Combustion Institute 2009, 32, 139. doi: 10.1016/j.proci.2008.06.142
-
[37]
(37) Muszyńska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N.J. Phys. Chem. A 2009, 113, 8327. doi: 10.1021/jp903762x
-
[38]
(38) Feng, S.; Duan,W. Z.; Liu, Q.; Liu, F. L. J. Mol. Struct. -Theochem 2009, 897, 1. doi: 10.1016/j.theochem.2008.10.019
-
[39]
(39) Burgess, D. R., Jr.; Zachariah, M. R.; Tsang,W.;Westmoreland,P. R. Prog. Energy Combust. Sci. 1996, 21, 453.
-
[40]
(40) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.
-
[41]
(41) Thiesemann, H.; Clifford, E. P.; Taatjes, C. A.; Klippenstein, S.J. J. Phys. Chem. A 2001, 105, 5393.
-
[42]
(42) Chuang, Y. Y.; Corchado, J. C.; Truhlar, D. G. J. Phys. Chem. A1999, 103, 1140.
-
[43]
(43) Chuang, Y. Y.; Corchado, J. C.; Fast, P. L.; et al. Polyrate,Version 8.2; University of Minnesota: Minneapolis, 1999.
-
[44]
(44) JANAF Thermochemical Tables, 2nd ed.; Stull, D. R., Prohet, H.Eds. National Standard Reference Data Series N0 37, NationalBureau of Standards, US vernment, Printing Office:Washington, DC, 1971.
-
[45]
(45) Duncan, J. L. Mol. Phys. 1974, 28, 1177. doi: 10.1080/00268977400102501
-
[46]
(46) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. doi: 10.1021/ja01607a027
-
[47]
(47) Fahr, A.; Laufer, A. H. J. Phys. Chem. 1988, 92 (29), 7229.
-
[48]
(48) Ira, N. L. Molecular Spectroscopy;Wiley: New York, 1975.
-
[49]
(49) Olleta, A. C.; Taccone, R. A. J. Mol. Struct. -Theochem 2000,507, 25. doi: 10.1016/S0166-1280(99)00346-2
-
[50]
(50) Liu, J. Y.; Li, Z. S.; Dai, Z.W.; Zhang, G.; Sun, C. C. Chem. Phys. 2004, 296, 43. doi: 10.1016/j.chemphys.2003.09.028
-
[51]
(51) Zhang, Q. Z.; Zhang, R. Q.; Gu, Y. S. J. Phys. Chem. A 2004,108, 1064. doi: 10.1021/jp036446u
-
[52]
(52) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994,98 (11), 2744.
-
[53]
(53) Kolesov, V. P. Russ. Chem. Rev. 1978, 47, 1145.
-
[54]
(54) Pickard, J. M.; Rodgers, A. S. Int. J. Chem. Kinet. 1983, 15,569. doi: 10.1002/kin.550150607
-
[55]
(55) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Corne11University Press: Ithaca, NY, 1960; p 260.
-
[56]
(56) Martell, J. M.; Boyd, R. J. J. Phys. Chem. 1995, 99, 13402. doi: 10.1021/j100036a014
-
[57]
(57) Garrett, B. C.; Truhlar, D. G. J. Am. Chem. Soc. 1979, 101 (16),4534.
-
[1]
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[3]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[4]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[5]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[6]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[7]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[8]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[9]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[10]
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
-
[11]
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
-
[12]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[13]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[14]
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
-
[15]
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
-
[16]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[17]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[19]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[20]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[1]
Metrics
- PDF Downloads(748)
- Abstract views(1783)
- HTML views(4)