Citation: MA Hua-Xuan, ZHENG Yan-Ling, ZHAN Yi-Shi, TAN Ying, HUANG Xiao, PENG Qi, XU Xuan. The Cr—Cr Bonding Character in Metal String Complexes [Cr3(dpa)4LL'] (dpa=dipyridylamide; L, L'=Cl, BF4, CCPh)[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1637-1644. doi: 10.3866/PKU.WHXB201204111 shu

The Cr—Cr Bonding Character in Metal String Complexes [Cr3(dpa)4LL'] (dpa=dipyridylamide; L, L'=Cl, BF4, CCPh)

  • Received Date: 23 February 2012
    Available Online: 11 April 2012

    Fund Project: 广东省自然科学资金项目(9151063101000037) (9151063101000037) 广东省教育部产学研项目(2010B090400184) (2010B090400184) 广东省人才引进专项资金(C10133) (C10133)广州市科技攻关项目(2011J4300063)资助 (2011J4300063)

  • To study the configuration, the metal-metal interactions and the influences of axial ligands L and L' on the Cr—Cr bond in metal string complexes Cr3(dpa)4LL' (L, L'=Cl, BF4, CCPh), the structures of complexes Cr3(dpa)4Cl2 (1), Cr3(dpa)4(BF4)2 (2), Cr3(dpa)4Cl(BF4) (3), Cr3(dpa)4(CCPh)2 (4) and Cr3(dpa)4Cl(CCPh) (5) were investigated by density functional theory UBP86 method. The conclusions can be drawn as follows: (1) The complex with longer average Cr—Cr distance tends to form a symmetrical configuration, while it tends to form a asymmetric configuration with shorter average Cr—Cr distance. The most stable spin states, quintet states, with the longest average Cr—Cr distance tend to form a symmetrical configuration, while septuplet states with shortest Cr—Cr distance tend to form asymmetrical one; (2) For quintet states of all complexes, there is only a 3-center-3-electron σ bond in Cr36+ chain. Furthermore, except the σ bond, there are weak π Cr—Cr interactions in complex 2 and 3. For septuplet states, there is a triple bond in the short Cr—Cr bond of complexes 1-3 and 5, while there is only a 3-center-3-electron σ bond in complex 4. Not only in symmetrical configuration but also in asymmetric configuration, there are σ delocalizations in Cr36+ chain, suggesting the asymmetrical metal string complexes are still the potential molecular wire species; (3) The interactions between axial ligand L and Cr atom mainly correspond to the nL→4sCr and nL→3dz2Cr delocalizations. In addition, for stronger σ donor CCPh- ligand, there are σC—C→4sCr delocalizations as well. The order of the bond strength of axial ligand L and Cr atom is 2<3<1<5<4. The strongest bonding between CCPh- ligand and Cr atom weakens the Cr—Cr bond and lengthens the Cr—Cr distance. Therefore, every spin state of 4 tends to form a symmetrical configuration.

  • 加载中
    1. [1]

      (1) Wu, L. P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.;Hathaway, B.; Simmons, C.; Thornton, P. J. Chem. Soc. Dalton Trans. 1990, 12, 3835.

    2. [2]

      (2) Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton. Trans. 1991,4, 993.

    3. [3]

      (3) Cotton, F. A.; Feng, X. J. J. Am. Chem. Soc. 1997, 119, 7514.doi: 10.1021/ja9705351

    4. [4]

      (4) Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119, 10223. doi: 10.1021/ja971998+

    5. [5]

      (5) Clérac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.;Murillo, C. A.; Pascual, I. Inorg. Chem. 2000, 39, 748.doi: 10.1021/ic990793u

    6. [6]

      (6) Clérac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.;Murillo, C. A.; Zhou, H. C. Inorg. Chem. 2000, 39, 3414.doi: 10.1021/ic0001964

    7. [7]

      (7) Clérac, R.; Cotton, F. A.; Dunbar, K. R.; Lu, T.; Murillo, C. A.;Wang, X. J. Am. Chem. Soc. 2000, 122, 2272. doi: 10.1021/ja994051b

    8. [8]

      (8) Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.;Wang, X.Inorg. Chem. 2001, 40, 2778. doi: 10.1021/ic001376g

    9. [9]

      (9) Berry, J. F.; Cotton, F. A.; Lu, T. J. Am. Chem. Soc. 2004, 126,7082. doi: 10.1021/ja049055h

    10. [10]

      (10) Sheu, J. T.; Lin, C. C.; Chao, I.;Wang, C. C.; Peng, S. M. Chem. Commun. 1996, 315.

    11. [11]

      (11) Shieh, S. J.; Chou, C. C.; Lee, G. H.;Wang, C. C.; Peng, S. M.Angew. Chem. Int. Edit. 1997, 36, 56. doi: 10.1002/anie.199700561

    12. [12]

      (12) Lai, S. Y.; Lin, T.W.; Chen, Y. H.;Wang, C. C.; Lee, G. H.;Yang, M.; Leung, M.; Peng, S. M. J. Am. Chem. Soc. 1999, 121,250. doi: 10.1021/ja982065w

    13. [13]

      (13) Peng, S. M.;Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.;Mou, C. Y.; Leung, M. K. J. Mag. Mag. Mater. 2000, 209, 80.doi: 10.1016/S0304-8853(99)00650-2

    14. [14]

      (14) Zhu, L. G.; Peng, X. M. Chinese Journal of Inorganic Chemistry 2002, 18, 117. [朱龙观, 彭旭明. 无机化学学报,2002, 18, 117.] doi: 10.3321/j.issn:1001-4861.2002.02.001

    15. [15]

      (15) Chen, I.W. P.; Fu, M. D.; Tseng,W. H.; Yu, J. Y.;Wu, S. H.; Ku,C. J.; Chen, C. H.; Peng, S. M. Angew. Chem. Int. Edit. 2006,118, 5946. doi: 10.1002/ange.200600800

    16. [16]

      (16) Hsiao, C. J.; Lai, S. H.; Chen, I. C.;Wang,W. Z.; Peng, S. M.J. Phys. Chem. A 2008, 112, 13528. doi: 10.1021/jp8081326

    17. [17]

      (17) Ismayilov, R. H.;Wang,W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S.A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Angew. Chem. Int. Edit. 2011, 50, 2045. doi: 10.1002/anie.201006695

    18. [18]

      (18) Benbellat, N.; Rohmer, M. M.; Bénard, M. Chem. Commun.2001, 2368.

    19. [19]

      (19) Rohmer, M. M.; Bénard, M. J. Clust. Sci. 2002, 13, 333. doi: 10.1023/A:1020546915168

    20. [20]

      (20) Wu, D. Y.; Zhang, T. L. Progress in Chemistry 2004, 16, 911.[吴德有, 张天乐. 化学进展, 2004, 16, 911.]

    21. [21]

      (21) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098

    22. [22]

      (22) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822

    23. [23]

      (23) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 299. doi: 10.1063/1.448975

    24. [24]

      (24) Glendening, E. D.; Reed, A. E.; Carpenter J. E. NBO Version 3.1.

    25. [25]

      (25) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B. et al. Gaussian 03,Revision C.02; Gaussian Inc:Wallingford, CT, 2003.

    26. [26]

      (26) Carpenter, J. E.;Weinhold, F. J. Mol. Struct. -Theochem 1988,169, 41. doi: 10.1016/0166-1280(88)80248-3


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    8. [8]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    9. [9]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    12. [12]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(705)
  • Abstract views(2072)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return