Citation: ZHU Xu-Fei, HAN Hua, SONG Ye, DUAN Wen-Qiang. Research Progress in Formation Mechanism of TiO2 Nanotubes and Nanopores in Porous Anodic Oxide[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1291-1305. doi: 10.3866/PKU.WHXB201204093 shu

Research Progress in Formation Mechanism of TiO2 Nanotubes and Nanopores in Porous Anodic Oxide

  • Received Date: 22 February 2012
    Available Online: 9 April 2012

    Fund Project: 国家自然科学基金(61171043, 51077072) (61171043, 51077072)国家科技重大专项资金项目(2009ZX01021-002)资助 (2009ZX01021-002)

  • Self-ordered porous anodic TiO2 nanotubes and other porous anodic oxides (PAO) have received considerable attention because of their potential for high technological application in a number of fields. The anodization of valve metals has been widely investigated over the last eight decades. The formation mechanisms of hexa nal cells and nanotubes, however, have remained unclear until now. Simply reviewing the mechanisms of PAO formation was not the aim of this research and we were more interested in reviewing the forming processes of compact anodic oxides (CAO) and investigating the relationship between the PAO and CAO, to better understand the pore generating mechanisms. The present work introduces the differences between PAO and CAO films, as well as reviewing the traditional theories of PAO films and their deficiencies. Recent progress in the formation mechanism of PAO, including the viscous flow, breakdown, equifield strength, and oxygen bubbles models has been reviewed in detail. The perspective on future developments for the PAO forming mechanism has been tentatively discussed. Based on sufficient analysis of the latest findings, it has been proposed that several approaches may be employed for investigating the pore forming and self-ordering mechanisms. These new approaches include ultrasound-assisted anodizing, anodizing under vacuum or high pressure and adding sodium carbonate or a reducing agent to the PAO-forming electrolytes. An investigation of changes in the current and anodizing efficiencies would also be an effective approach for better understanding the physical nature of fieldassisted dissolution (FAD).
  • 加载中
    1. [1]

      (1) Vermilyea, D. A. Acta Metall. 1953, 1, 282.  doi: 10.1016/0001-6160(53)90101-1

    2. [2]

      (2) Hunter, M. S.; Fowler, P. J. Electrochem. Soc. 1954, 101, 481.  doi: 10.1149/1.2781304

    3. [3]

      (3) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327.  doi: 10.1021/jp809385x

    4. [4]

      (4) Spooner, R. C. Nature 1963, 200, 1002.  doi: 10.1038/2001002a0

    5. [5]

      (5) Tsuchiya, H.; Macak, J. M.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna, K.; Schmuki, P. Electrochem. Commun. 2005, 7, 295.  doi: 10.1016/j.elecom.2005.01.003

    6. [6]

      (6) Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Electrochem. Commun. 2005, 7, 97.  doi: 10.1016/j.elecom.2004.11.012

    7. [7]

      (7) Whitney, T. M.; Searson, P. C.; Jiang, J. S.; Chien, C. L. Science 1993, 261, 1316.  doi: 10.1126/science.261.5126.1316

    8. [8]

      (8) Zhao, L. L.; Steinhart, M.; Gösele, U.; Schlecht, S. Adv. Mater. 2008, 20, 1218.  doi: 10.1002/adma.200702376

    9. [9]

      (9) Mahima, S.; Kannan, R.; Komath, I.; Aslam, M.; Pillai, V. K. Chem. Mater. 2008, 20, 601.  doi: 10.1021/cm702102b

    10. [10]

      (10) Evans, P. R.; Zhu, X. H.; Baxter, P.; McMillen, M.; McPhillips, J.; Morrison, F. D.; Scott, J. F.; Pollard, R. J.; Bowman, R. M.; Gregg, J. M. Nano Lett. 2007, 7, 1134.  doi: 10.1021/nl0626028

    11. [11]

      (11) Huang, C.; Jiang, J.; Lu, M.; Sun, L.; Meletis, E. I.; Hao, Y. Nano Lett. 2009, 9, 4297.  doi: 10.1021/nl902529y

    12. [12]

      (12) Gu, D.; Baumgart, H.; Abdel-Fattah, T. M.; Namkoong, G. ACS Nano 2010, 4, 753.  doi: 10.1021/nn901250w

    13. [13]

      (13) Jha, H.; Song, Y. Y.; Yang, M.; Schmuki, P. Electrochem. Commun. 2011, 13, 934.  doi: 10.1016/j.elecom.2011.06.004

    14. [14]

      (14) Beranek, R.; Hildebrand, H.; Schmuki, P. Electrochem. Solid State Lett. 2003, 6, B12.

    15. [15]

      (15) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Mater. Res. 2005, 20, 230.  doi: 10.1557/JMR.2005.0020

    16. [16]

      (16) Albu, S. P.; Kim, D.; Schmuki, P. Angew. Chem. Int. Edit. 2008, 47, 1916.  doi: 10.1002/anie.200704144

    17. [17]

      (17) Habazaki, H.; Teraoka, M.; Aoki, Y.; Skeldon, P.; Thompson, G. E. Electrochim. Acta 2010, 55, 3939.  doi: 10.1016/j.electacta.2010.02.036

    18. [18]

      (18) Lee, K.; Kim, D.; Roy, P.; Paramasivam, I.; Birajdar, B. I.; Spiecker, E.; Schmuki, P. J. Am. Chem. Soc. 2010, 132, 1478.  doi: 10.1021/ja910045x

    19. [19]

      (19) Wei,W.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2008, 10, 428.  doi: 10.1016/j.elecom.2008.01.004

    20. [20]

      (20) Tsuchiya, H.; Macak, J. M.; Sieber, I.; Schmuki, P. Small 2005, 1, 722.  doi: 10.1002/smll.200400163

    21. [21]

      (21) El-Sayed, H.; Singh, S.; Greiner, M. T.; Kruse, P. Nano Lett. 2006, 6, 2995.  doi: 10.1021/nl062347r

    22. [22]

      (22) Allam, N. K.; Feng, X. J.; Grimes, C. A. Chem. Mater. 2008, 20, 6477.  doi: 10.1021/cm801472y

    23. [23]

      (23) Tsuchiya, H.; Schmuki, P. Electrochem. Commun. 2004, 6, 1131.  doi: 10.1016/j.elecom.2004.09.003

    24. [24]

      (24) Yang, S.; Aoki, Y.; Habazaki, H. Appl. Surf. Sci. 2011, 257, 8190.  doi: 10.1016/j.apsusc.2011.01.041

    25. [25]

      (25) Barbara, P.; Andreas, K.; Thomas, B. Adv. Mater. 2011, 23, 2395.  doi: 10.1002/adma.201002828

    26. [26]

      (26) Alam, K. M.; Singh, A. P.; Bodepudi, S. C.; Pramanik, S. Surf. Sci. 2011, 605, 441.  doi: 10.1016/j.susc.2010.11.015

    27. [27]

      (27) Li, M.; Liu, Y.;Wang, H.; Shen, H. Appl. Energ. 2011, 88, 825.  doi: 10.1016/j.apenergy.2010.09.017

    28. [28]

      (28) Jin, Z.; Meng, F. L.; Liu, J. Y.; Li, M. Q.; Kong, L. T.; Liu, J. H. Sensor. Actuat. B-Chem. 2011, 157, 641.  doi: 10.1016/j.snb.2011.05.044

    29. [29]

      (29) Wang, D. A.; Liu, Y.;Wang, C.W.; Zhou, F. Prog. Chem. 2010, 22, 1035. [王道爱, 刘盈, 王成伟, 周峰. 化学进展, 2010, 22, 1035.]

    30. [30]

      (30) Li, H. H.; Chen, R. F.; Ma, C.; Zhang, S. L.; An, Z. F.; Huang, W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢, 陈润锋, 马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27, 1017.]  doi: 10.3866/PKU.WHXB20110514

    31. [31]

      (31) Ye, Q. M.; Song, Y.; Liu, P.; Hu, J. J. Prog. Chem. 2011, 23, 2617. [叶秋梅, 宋晔, 刘鹏, 胡隽隽. 化学进展, 2011, 23, 2617.]

    32. [32]

      (32) Zheng, Q.; Zhou, B. X.; Bai, J.; Cai,W. M.; Liao, J. S. Prog. Chem. 2007, 19, 117. [郑青, 周保学, 白晶, 蔡为民, 廖俊生, 化学进展, 2007, 19, 117.]

    33. [33]

      (33) Diggle, J.W.; Downie, T. C.; ulding, C.W. Chem. Rev. 1969, 69, 365.  10.1021/cr60259a005

    34. [34]

      (34) Despic, A.; Parkhutik, V. P. Modern Aspects of Electrochemistry; Plenum Press: New York, 1989; Vol. 23, pp 401-458.

    35. [35]

      (35) Parkhutik, V. P.; Shershulsky, V. I. J. Phys. D: Appl. Phys. 1992, 25, 1258.  doi: 10.1088/0022-3727/25/8/017

    36. [36]

      (36) Thompson, G. E. Thin Solid Films 1997, 297, 192.  doi: 10.1016/S0040-6090(96)09440-0

    37. [37]

      (37) Dickey, J. R.; Davidson, J. L.; Tzeng, Y. J. Electrochem. Soc. 1989, 136, 1772.  doi: 10.1149/1.2097010

    38. [38]

      (38) Song, Y.; Zhu, X. F.;Wang, X. L.; Che, J. F.; Du, Y. J. Appl. Electrochem. 2001, 31, 1273.  doi: 10.1023/A:1012746926209

    39. [39]

      (39) Seruga, M.; Hasenay, D. J. Appl. Electrochem. 2001, 31, 961.  doi: 10.1023/A:1017556323508

    40. [40]

      (40) Zhu, Q.; Song, Y.; Zhu, X. F.;Wang, X. L. J. Electroanal. Chem. 2007, 601, 229.  doi: 10.1016/j.jelechem.2006.11.016

    41. [41]

      (41) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.  doi: 10.1038/nmat2297

    42. [42]

      (42) Song, Y.; Zhu, X. F.;Wang, X.;Wang, M. J. J. Power Sources 2006, 157, 610.  doi: 10.1016/j.jpowsour.2005.07.085

    43. [43]

      (43) Overmeere, Q. V.; Proost, J. Electrochim. Acta 2010, 55, 4653.  doi: 10.1016/j.electacta.2010.03.042

    44. [44]

      (44) Li, Y.; Shimada, H.; Sakairi, M.; Shigyo, K.; Takahashi, H.; Seo, M. J. Electrochem. Soc. 1997, 144, 866.  doi: 10.1149/1.1837501

    45. [45]

      (45) Zhu, X. F.; Liu, L.; Zhao, B. C. The Chinese Journal of Nonferrous Metals 2003, 13, 1031. [朱绪飞, 刘霖, 赵宝昌. 中国有色金属学报, 2003, 13, 1031.]

    46. [46]

      (46) Lee,W.; Scholz, R.; Gösele, U. Nano Lett. 2008, 8, 2155.  doi: 10.1021/nl080280x

    47. [47]

      (47) Keller, F.; Hunter, M. S.; Robinson, D. L. J. Electrochem. Soc. 1953, 100, 411.  doi: 10.1149/1.2781142

    48. [48]

      (48) Vermilyea, D. A. Acta Metall. 1954, 2, 482.  doi: 10.1016/0001-6160(54)90070-X

    49. [49]

      (49) Lakhiani, D. M.; Shreir, L. L. Nature 1960, 188, 49.  doi: 10.1038/188049a0

    50. [50]

      (50) O'Sullivan, J. P.;Wood, G. C. Proc. R. Soc. Lond. A 1970, 317, 511.

    51. [51]

      (51) Thompson, G. E.; Furneaux, R. C.;Wood, G. C.; Richardson, J. A.; ode, J. S. Nature 1978, 272, 433.  doi: 10.1038/272433a0

    52. [52]

      (52) Thompson, G. E.;Wood, G. C. Nature 1981, 290, 230.  doi: 10.1038/290230a0

    53. [53]

      (53) Shimizu, K.; Thompson, G. R.;Wood, G. C. Thin Solid Films 1981, 81, 39.  doi: 10.1016/0040-6090(81)90502-2

    54. [54]

      (54) Albella, J. M.; Montero, I.; Martinez-Duart, J. M. Electrochim. Acta 1987, 32, 255.  doi: 10.1016/0013-4686(87)85032-6

    55. [55]

      (55) Furneaux, R. C.; Rigby,W. R.; Davidson, A. P. Nature 1989, 337, 147.  doi: 10.1038/337147a0

    56. [56]

      (56) Shimizu, K.; Kobayashi, K.; Thompson, G. E. Philos. Mag. A 1992, 66, 643.  doi: 10.1080/01418619208201581

    57. [57]

      (57) Masuda, H.; Fukuda, K. Science 1995, 268, 1466.  doi: 10.1126/science.268.5216.1466

    58. [58]

      (58) Li, F. Y.; Zhang, L.; Metzger, R. M. Chem. Mater. 1998, 10, 2470.  doi: 10.1021/cm980163a

    59. [59]

      (59) Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127

    60. [60]

      (60) Ono, S.; Saito, M.; Asoh, H. Electrochim. Acta 2005, 51, 827.  doi: 10.1016/j.electacta.2005.05.058

    61. [61]

      (61) Jessensky, O.; Müller, F.; Gösele, U. Appl. Phys. Lett. 1998, 72, 1173.  doi: 10.1063/1.121004

    62. [62]

      (62) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. J. Appl. Phys. 1998, 84, 6023.  doi: 10.1063/1.368911

    63. [63]

      (63) Nielsch, K.; Choi, J.; Schwirn, K.;Wehrspohn, R. B.; Gösele, U. Nano Lett. 2002, 2, 677.  doi: 10.1021/nl025537k

    64. [64]

      (64) Guo, D. Z.; Hou, S. M.; Xue, Z. Q. Chin. Phys. Lett. 2002, 19, 385.  doi: 10.1088/0256-307X/19/3/330

    65. [65]

      (65) Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Curr. Opin. Solid St. M 2007, 11, 3.  doi: 10.1016/j.cossms.2007.08.004

    66. [66]

      (66) Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791.

    67. [67]

      (67) Jiang, X. X.; Zhao, N. Q. Journal of Functional Materials 2005, 36, 487. [江小雪, 赵乃勤. 功能材料, 2005, 36, 487.]  doi: 10.3321/j.issn:1001-9731.2005.04.002

    68. [68]

      (68) Lai, Y. K.; Sun, L.; Zuo, J.; Lin, C. J. Acta Phys. -Chim. Sin. 2004, 20, 1063. [赖跃坤, 孙岚, 左娟, 林昌健. 物理化学学报, 2004, 20, 1063.]  10.3866/PKU.WHXB20040901

    69. [69]

      (69) Siejka, J.; Ortega, C.; An, O. J. Electrochem. Soc. 1977, 124, 883.  10.1149/1.2133446

    70. [70]

      (70) Lee,W.; Schwirn, K.; Steinhart, M.; Pippel, E.; Scholz, R.; Gösele, U. Nat. Nanotechnol. 2008, 3, 234.  doi: 10.1038/nnano.2008.54

    71. [71]

      (71) Skeldon, P.; Thompson, G. E.; Garcia-Vergara, S. J.; Iglesias- Rubianes, L.; Blanco-Pinzon, C. E. Electrochem. Solid. St. 2006, 9, B47.

    72. [72]

      (72) Garcia-Vergara, S. J.; Skeldon, P.; Thompson, G. E.; Habazaki, H. Electrochim. Acta 2006, 52, 681.  doi: 10.1016/j.electacta.2006.05.054

    73. [73]

      (73) Garcia-Vergara, S. J.; Habazaki, H.; Skeldon, P.; Thompson, G. E. Electrochim. Acta 2010, 55, 3175.  doi: 10.1016/j.electacta.2010.01.038

    74. [74]

      (74) Houser, J. E.; Hebert, K. R. Nat. Mater. 2009, 8, 415.  doi: 10.1038/nmat2423

    75. [75]

      (75) Houser, J. E., Hebert, K. R. J. Electrochem. Soc. 2006, 153, B566.

    76. [76]

      (76) Garcia-Vergara, S. J.; Skeldon, P.; Thompson, G. E.; Habazaki, H. Corrosion Sci. 2007, 49, 3772.  doi: 10.1016/j.corsci.2007.03.036

    77. [77]

      (77) Li, D. D.; Jiang, C. H.; Jiang, J. H.; Ren, X. Mater. Chem. Phys. 2008, 111, 168.  doi: 10.1016/j.matchemphys.2008.03.044

    78. [78]

      (78) Matykina, E.; Arrabal, R.; Skeldon, P. Surf. Coat. Tech. 2010, 205, 1668.  doi: 10.1016/j.surfcoat.2010.05.014

    79. [79]

      (79) Coz, F. L.; Arurault, L.; Datas, L. Mater. Charact. 2010, 61, 283.  doi: 10.1016/j.matchar.2009.12.008

    80. [80]

      (80) Yang, S.; Aoki, Y.; Skeldon, P.; Thompson, G. E.; Habazaki, H. J. Solid State Electrochem. 2011, 15, 689.  doi: 10.1007/s10008-010-1141-6

    81. [81]

      (81) Oh, J.; Thompson, C. V. Electrochim. Acta 2011, 56, 4044.  doi: 10.1016/j.electacta.2011.02.002

    82. [82]

      (82) Li, Y. B.; Zheng, M. J.; Ma, L.; Shen,W. Z. Nanotechnology 2006, 17, 5101.  doi: 10.1088/0957-4484/17/20/010

    83. [83]

      (83) Huang, Q.; Lye,W. K.; Reed, M. L. Nanotechnology 2007, 18, 405302.  doi: 10.1088/0957-4484/18/40/405302

    84. [84]

      (84) Yao, Z.W.; Zheng, M. J.; Ma, L.; Shen,W. Z. Nanotechnology 2008, 19, 465705.  doi: 10.1088/0957-4484/19/46/465705

    85. [85]

      (85) Bai, J.; Zhou, B. X.; Li, L. H.; Liu, Y. B.; Zheng, Q.; Shao, J. H.; Zhu, X. Y.; Cai,W. M.; Liao, J. S.; Zou, L. X. J. Mater. Sci. 2008, 43, 1880.  doi: 10.1007/s10853-007-2418-8

    86. [86]

      (86) Li, D. D.; Jiang, C. H.; Jiang, J. H.; Lu, J. G. Chem. Mater. 2009, 21, 253.  doi: 10.1021/cm8022242

    87. [87]

      (87) Li, D. D.; Zhao, L.; Jiang, C. H.; Lu, J. G. Nano Lett. 2010, 10, 2766.  doi: 10.1021/nl1004493

    88. [88]

      (88) Lin, J.; Chen, J. F.; Chen, X. F. Electrochem. Commun. 2010, 12, 1062.  doi: 10.1016/j.elecom.2010.05.027

    89. [89]

      (89) Lin, J.; Liu, K.; Chen, X. F. Small 2011, 7, 1784.  doi: 10.1002/smll.201002098

    90. [90]

      (90) Ding, G. Q.; Shen,W. Z.; Zheng, M. J.; Zhou, Z, B. Nanotechnology 2006, 17, 2590.  doi: 10.1088/0957-4484/17/10/024

    91. [91]

      (91) Ding, G. Q.; Zheng, M. J.; Cu,W. L.; Shen,W. Z. Nanotechnology 2005, 16, 1285.  doi: 10.1088/0957-4484/16/8/050

    92. [92]

      (92) Cheng,W.; Xu, J. Y.; Hu, J.; Jin, X. J. Chin. J. Inorg. Chem. 2009, 25, 92. [程伟, 徐金叶, 胡静, 金学军. 无机化学学报, 2009, 25, 92.]

    93. [93]

      (93) Tao, J.; Tao, H. J.; Bao, Z. G.;Wang, L. Rare Metal Mater. Eng. 2009, 38, 967. [陶杰, 陶海军, 包祖国, 王玲. 稀有金属材料与工程, 2009, 38, 967.]

    94. [94]

      (94) Zhou, C. F.;Wang, Z. Y. J. Inorg. Mater. 2009, 24, 1125. [周成风, 王志义. 无机材料学报, 2009, 24, 1125.]  doi: 10.3724/SP.J.1077.2009.01125

    95. [95]

      (95) Li, S. Q.; Yin, J. B.; Zhang, G. M. Sci. China Chem. 2010, 53, 1068. [李仕琦, 尹建波, 张耿民. 中国科学: 化学, 2010, 53, 1068.]  doi: 10.1007/s11426-010-0155-3

    96. [96]

      (96) Chen, X. Q.; Zhang, X.W.; Lei, L. C. The Chinese Journal of Nonferrous Metals 2010, 20, 1724. [陈秀琴, 张兴旺, 雷乐成. 中国有色金属学报, 2010, 20, 1724.]

    97. [97]

      (97) Li, H. Y.;Wang, J. S.; Chen, X.; Zhou, M. L.; Sun, G. S.; Huang, K. L.; Guo, Q. N. Chin. J. Inorg. Chem. 2010, 26, 217. [李洪义, 王金淑, 陈欣, 周美玲, 孙果宋, 黄科林, 郭秋宁. 无机化学学报, 2010, 26, 217.]

    98. [98]

      (98) Chen,W.;Wu, J. S.; Yuan, J. H.; Xia, X. H.; Lin, X. H. J. Electroanal. Chem. 2007, 600, 257.  doi: 10.1016/j.jelechem.2006.10.022

    99. [99]

      (99) Chen,W.;Wu, J. S.; Xia, X. H. ACS Nano 2008, 2, 959.  doi: 10.1021/nn700389j

    100. [100]

      (100) Li, Y.; Ling, Z. Y.; Chen, S. S.;Wang, J. C. Nanotechnology 2008, 19, 225604.  doi: 10.1088/0957-4484/19/22/225604

    101. [101]

      (101) Li, Y.; Ling, Z. Y.; Hu, X.; Liu, Y. S.; Chang, Y. J. Mater. Chem. 2011, 21, 9661.  doi: 10.1039/c1jm10781j

    102. [102]

      (102) Li, Y.; Ling, Z. Y.; Hu, X.; Liu, Y. S.; Chang, Y. Chem. Commun. 2011, 47, 2173.  doi: 10.1039/c0cc04907g

    103. [103]

      (103) Yu, X. F.; Li, Y. X.; Ge,W. Y.; Yang, Q. B.; Zhu, N. F.; Kalantar-Zadeh, K. Nanotechnology 2006, 17, 808.  doi: 10.1088/0957-4484/17/3/033

    104. [104]

      (104) Wang, D. A.; Liu, Y.; Yu, B.; Zhou, F.; Liu,W. M. Chem. Mater. 2009, 21, 1198.  doi: 10.1021/cm802384y

    105. [105]

      (105) Zhang, R.; Jiang, K. M.; Zhu, Y.; Qi, H. Y.; Ding, G. Q. Appl. Surf. Sci. 2011, 258, 586.  doi: 10.1016/j.apsusc.2011.08.041

    106. [106]

      (106) Wang, Y.;Wu, Y. C.; Qin, Y. Q.; Xu, G. B.; Hu, X. Y.; Cui, J. W.; Zheng, H. M.; Hong, Y.; Zhang, X. Y. J. Alloy. Compd. 2011, 509, L157.

    107. [107]

      (107) Zhao, J. L.;Wang, X. H.; Chen, R. Z.; Li, L. T. Solid State Commun. 2005, 134, 705.  doi: 10.1016/j.ssc.2005.02.028

    108. [108]

      (108) Li, S. Q.; Zhang, G. M.; Guo, D. Z.; Yu, L. G.; Zhang,W. J. Phys. Chem. C 2009, 113, 12759.  doi: 10.1021/jp903037f

    109. [109]

      (109) Wang, N.; Zhang,W. D.; Xu, J. P.; Ma, B.; Zhang, Z. Z.; Jin, Q. Y.; Bunte, B.; Hüpkes, J.; Bochem, H. P. J. Solid State Electrochem. 2010, 14, 1377.  doi: 10.1007/s10008-009-0959-2

    110. [110]

      (110) Xiao, X. F.; Liu, R. F.; Tian, T. J. Alloy. Compd. 2008, 466, 356.  doi: 10.1016/j.jallcom.2007.11.032

    111. [111]

      (111) Zhu, Y. Y.; Ding, G. Q.; Ding, J. N.; Yuan, N. Y. Nanoscale Res. Lett. 2010, 5, 725.  doi: 10.1007/s11671-010-9538-9

    112. [112]

      (112) Elsanousi, A.; Zhang, J.; Fadlalla, H. M.; Zhang, F.;Wang, H.; Ding, X.; Huang, Z. X.; Tang, C. J. Mater. Sci. 2008, 43, 7219.  doi: 10.1007/s10853-008-2947-9

    113. [113]

      (113) Zhang, F.; Chen, S. G.; Yin, Y. S.; Lin, C.; Xue, C. R. J. Alloy. Compd. 2010, 490, 247.  doi: 10.1016/j.jallcom.2009.09.169

    114. [114]

      (114) Ren, Y.W.; Zhang, K. S. Mater. Lett. 2009, 63, 1925.  doi: 10.1016/j.matlet.2009.06.006

    115. [115]

      (115) Zhu, X. F.; Li, D.; Song, Y.; Xiao, Y. Mater. Lett. 2005, 59, 3160.  doi: 10.1016/j.matlet.2005.05.038

    116. [116]

      (116) Yang, X. L.; Zhu, X. F.; Jia, H.; Han, T. Monatsh. Chem. 2009, 140, 595.  doi: 10.1007/s00706-008-0098-y

    117. [117]

      (117) Zhu, X. F.; Liu, L.; Song, Y.; Jia, H.; Yu, H.; Xiao, X.; Yang, X. L. Mater. Lett. 2008, 62, 4038.  doi: 10.1016/j.matlet.2008.05.062

    118. [118]

      (118) Zhu, X. F.; Liu, L.; Song, Y.; Jia, H.; Yu, H.; Xiao, X.; Yang, X. L. Monatsh. Chem. 2008, 139, 999.  doi: 10.1007/s00706-008-0893-5

    119. [119]

      (119) Zhu, X. F.; Song, Y.; Liu, L.;Wang, C.; Zheng, J.; Jia, H.; Wang, X. Nanotechnology 2009, 20, 475303.  doi: 10.1088/0957-4484/20/47/475303

    120. [120]

      (120) Poinern, G. E. J.; Ali, N.; Fawcett, D. Materials 2011, 4, 487.  doi: 10.3390/ma4030487

    121. [121]

      (121) Patermarakis, G. J. Electroanal. Chem. 2009, 635, 39.  doi: 10.1016/j.jelechem.2009.07.024

    122. [122]

      (122) Crossland, A. C.; Habazaki, H.; Shimizu, K.; Skeldon, P.; Thompson, G. E.;Wood, G. C.; Zhou, X.; Smith, C. J. Corrosion Sci. 1999, 41, 1945.  doi: 10.1016/S0010-938X(99)00035-9

    123. [123]

      (123) Zhou, X.; Thompson, G. E.; Habazaki, H.; Paez, M. A.; Shimizu, K.; Skeldon, P.;Wood, G. C. J. Electrochem. Soc. 2000, 147, 1747.  doi: 10.1149/1.1393428

    124. [124]

      (124) Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G. E. Corrosion Sci. 2004, 46, 2041.  doi: 10.1016/j.corsci.2003.10.027

    125. [125]

      (125) Ono, S.; Ichinose, H.; Masuko, N. J. Electrochem. Soc. 1992, 139, L80.

    126. [126]

      (126) Su, Z. X.; Zhou,W. Z. Science Foundation in China 2008, 16, 36.

    127. [127]

      (127) Su, Z. X.; Hähner, G.; Zhou,W. Z. J. Mater. Chem. 2008, 18, 5787.  doi: 10.1039/b812432a

    128. [128]

      (128) Su, Z. X.; Zhou,W. Z. Adv. Mater. 2008, 20, 3663.  doi: 10.1002/adma.200800845

    129. [129]

      (129) Su, Z. X.; Bühl, M.; Zhou,W. Z. J. Am. Chem. Soc. 2009, 131, 8697.  doi: 10.1021/ja902267b

    130. [130]

      (130) Su, Z. X.; Zhou,W. Z. J. Mater. Chem. 2009, 19, 2301.  doi: 10.1039/b820504c

    131. [131]

      (131) Su, Z. X.; Zhou,W. Z. J. Mater. Chem. 2011, 21, 357.  doi: 10.1039/c0jm02521f

    132. [132]

      (132) Su, Z. X.; Zhou,W. Z. J. Mater. Chem. 2011, 21, 8955.  doi: 10.1039/c0jm04587j

    133. [133]

      (133) Schwirn, K.; Lee,W.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. ACS Nano 2008, 2, 302.  doi: 10.1021/nn7001322

    134. [134]

      (134) Patermarakis, G.; Moussoutzanis, K. Electrochim. Acta 2009, 54, 2434.  doi: 10.1016/j.electacta.2008.11.064

    135. [135]

      (135) Panaitescu, E.; Richter, C.; Menon, L. J. Electrochem. Soc. 2008, 155, E7.

    136. [136]

      (136) Friedman, A. L.; Panaitescu, E.; Richter, C.; Menon, L. J. Nanosci. Nanotechnol. 2008, 8, 5864.  doi: 10.1166/jnn.2008.328

    137. [137]

      (137) Sieber, I. V.; Schmuki, P. J. Electrochem. Soc. 2005, 152, C639.

    138. [138]

      (138) Al-Abdullah, Z. T. Y.; Shin, Y.; Kler, R.; Perry, C. C.; Zhou,W. Z.; Chen, Q. Nanotechnology 2010, 21, 505601.  doi: 10.1088/0957-4484/21/50/505601

    139. [139]

      (139) Matykina, E.; Arrabal, R.; Skeldon, P.; Thompson, G. E.; Habazaki, H. Thin Solid Films 2008, 516, 2296.  doi: 10.1016/j.tsf.2007.08.104

    140. [140]

      (140) Patermarakis, G.; Moussoutzanis, K. J. Electroanal. Chem. 2011, 659, 176.  doi: 10.1016/j.jelechem.2011.05.023

    141. [141]

      (141) Ispas, A.; Bund, A.; Vrublevsky, I. J. Solid State Electrochem. 2010, 14, 2121.  doi: 10.1007/s10008-010-1043-7

    142. [142]

      (142) Chung, C. K.; Zhou, R. X.; Liu, T. Y.; Chang,W. T. Nanotechnology 2009, 20, 055301.  doi: 10.1088/0957-4484/20/5/055301

    143. [143]

      (143) Berger, S.; Albu, S. P.; Schmidt-Stein, F.; Hildebrand, H.; Schmuki, P.; Hammond, J. S.; Paul, D. F.; Reichlmaier, S. Surf. Sci. 2011, 605, L57.

    144. [144]

      (144) Dong, H. Q.; Pan, X.; Xie, Q.; Meng, Q. Q.; Gao, J. R.;Wang, J. G. Acta Phys. -Chim. Sin. 2012, 28, 44. [董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国. 物理化学学报, 2012, 28, 44.]  10.3866/PKU.WHXB20122844

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    13. [13]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(1501)
  • Abstract views(3152)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return