Citation: ZHU Xu-Fei, HAN Hua, SONG Ye, DUAN Wen-Qiang. Research Progress in Formation Mechanism of TiO2 Nanotubes and Nanopores in Porous Anodic Oxide[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1291-1305. doi: 10.3866/PKU.WHXB201204093
-
Self-ordered porous anodic TiO2 nanotubes and other porous anodic oxides (PAO) have received considerable attention because of their potential for high technological application in a number of fields. The anodization of valve metals has been widely investigated over the last eight decades. The formation mechanisms of hexa nal cells and nanotubes, however, have remained unclear until now. Simply reviewing the mechanisms of PAO formation was not the aim of this research and we were more interested in reviewing the forming processes of compact anodic oxides (CAO) and investigating the relationship between the PAO and CAO, to better understand the pore generating mechanisms. The present work introduces the differences between PAO and CAO films, as well as reviewing the traditional theories of PAO films and their deficiencies. Recent progress in the formation mechanism of PAO, including the viscous flow, breakdown, equifield strength, and oxygen bubbles models has been reviewed in detail. The perspective on future developments for the PAO forming mechanism has been tentatively discussed. Based on sufficient analysis of the latest findings, it has been proposed that several approaches may be employed for investigating the pore forming and self-ordering mechanisms. These new approaches include ultrasound-assisted anodizing, anodizing under vacuum or high pressure and adding sodium carbonate or a reducing agent to the PAO-forming electrolytes. An investigation of changes in the current and anodizing efficiencies would also be an effective approach for better understanding the physical nature of fieldassisted dissolution (FAD).
-
-
[1]
(1) Vermilyea, D. A. Acta Metall. 1953, 1, 282. doi: 10.1016/0001-6160(53)90101-1
-
[2]
(2) Hunter, M. S.; Fowler, P. J. Electrochem. Soc. 1954, 101, 481. doi: 10.1149/1.2781304
-
[3]
(3) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327. doi: 10.1021/jp809385x
-
[4]
(4) Spooner, R. C. Nature 1963, 200, 1002. doi: 10.1038/2001002a0
-
[5]
(5) Tsuchiya, H.; Macak, J. M.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna, K.; Schmuki, P. Electrochem. Commun. 2005, 7, 295. doi: 10.1016/j.elecom.2005.01.003
-
[6]
(6) Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P. Electrochem. Commun. 2005, 7, 97. doi: 10.1016/j.elecom.2004.11.012
-
[7]
(7) Whitney, T. M.; Searson, P. C.; Jiang, J. S.; Chien, C. L. Science 1993, 261, 1316. doi: 10.1126/science.261.5126.1316
-
[8]
(8) Zhao, L. L.; Steinhart, M.; Gösele, U.; Schlecht, S. Adv. Mater. 2008, 20, 1218. doi: 10.1002/adma.200702376
-
[9]
(9) Mahima, S.; Kannan, R.; Komath, I.; Aslam, M.; Pillai, V. K. Chem. Mater. 2008, 20, 601. doi: 10.1021/cm702102b
-
[10]
(10) Evans, P. R.; Zhu, X. H.; Baxter, P.; McMillen, M.; McPhillips, J.; Morrison, F. D.; Scott, J. F.; Pollard, R. J.; Bowman, R. M.; Gregg, J. M. Nano Lett. 2007, 7, 1134. doi: 10.1021/nl0626028
-
[11]
(11) Huang, C.; Jiang, J.; Lu, M.; Sun, L.; Meletis, E. I.; Hao, Y. Nano Lett. 2009, 9, 4297. doi: 10.1021/nl902529y
-
[12]
(12) Gu, D.; Baumgart, H.; Abdel-Fattah, T. M.; Namkoong, G. ACS Nano 2010, 4, 753. doi: 10.1021/nn901250w
-
[13]
(13) Jha, H.; Song, Y. Y.; Yang, M.; Schmuki, P. Electrochem. Commun. 2011, 13, 934. doi: 10.1016/j.elecom.2011.06.004
-
[14]
(14) Beranek, R.; Hildebrand, H.; Schmuki, P. Electrochem. Solid State Lett. 2003, 6, B12.
-
[15]
(15) Cai, Q. Y.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Mater. Res. 2005, 20, 230. doi: 10.1557/JMR.2005.0020
-
[16]
(16) Albu, S. P.; Kim, D.; Schmuki, P. Angew. Chem. Int. Edit. 2008, 47, 1916. doi: 10.1002/anie.200704144
-
[17]
(17) Habazaki, H.; Teraoka, M.; Aoki, Y.; Skeldon, P.; Thompson, G. E. Electrochim. Acta 2010, 55, 3939. doi: 10.1016/j.electacta.2010.02.036
-
[18]
(18) Lee, K.; Kim, D.; Roy, P.; Paramasivam, I.; Birajdar, B. I.; Spiecker, E.; Schmuki, P. J. Am. Chem. Soc. 2010, 132, 1478. doi: 10.1021/ja910045x
-
[19]
(19) Wei,W.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2008, 10, 428. doi: 10.1016/j.elecom.2008.01.004
-
[20]
(20) Tsuchiya, H.; Macak, J. M.; Sieber, I.; Schmuki, P. Small 2005, 1, 722. doi: 10.1002/smll.200400163
-
[21]
(21) El-Sayed, H.; Singh, S.; Greiner, M. T.; Kruse, P. Nano Lett. 2006, 6, 2995. doi: 10.1021/nl062347r
-
[22]
(22) Allam, N. K.; Feng, X. J.; Grimes, C. A. Chem. Mater. 2008, 20, 6477. doi: 10.1021/cm801472y
-
[23]
(23) Tsuchiya, H.; Schmuki, P. Electrochem. Commun. 2004, 6, 1131. doi: 10.1016/j.elecom.2004.09.003
-
[24]
(24) Yang, S.; Aoki, Y.; Habazaki, H. Appl. Surf. Sci. 2011, 257, 8190. doi: 10.1016/j.apsusc.2011.01.041
-
[25]
(25) Barbara, P.; Andreas, K.; Thomas, B. Adv. Mater. 2011, 23, 2395. doi: 10.1002/adma.201002828
-
[26]
(26) Alam, K. M.; Singh, A. P.; Bodepudi, S. C.; Pramanik, S. Surf. Sci. 2011, 605, 441. doi: 10.1016/j.susc.2010.11.015
-
[27]
(27) Li, M.; Liu, Y.;Wang, H.; Shen, H. Appl. Energ. 2011, 88, 825. doi: 10.1016/j.apenergy.2010.09.017
-
[28]
(28) Jin, Z.; Meng, F. L.; Liu, J. Y.; Li, M. Q.; Kong, L. T.; Liu, J. H. Sensor. Actuat. B-Chem. 2011, 157, 641. doi: 10.1016/j.snb.2011.05.044
-
[29]
(29) Wang, D. A.; Liu, Y.;Wang, C.W.; Zhou, F. Prog. Chem. 2010, 22, 1035. [王道爱, 刘盈, 王成伟, 周峰. 化学进展, 2010, 22, 1035.]
-
[30]
(30) Li, H. H.; Chen, R. F.; Ma, C.; Zhang, S. L.; An, Z. F.; Huang, W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢, 陈润锋, 马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27, 1017.] doi: 10.3866/PKU.WHXB20110514
-
[31]
(31) Ye, Q. M.; Song, Y.; Liu, P.; Hu, J. J. Prog. Chem. 2011, 23, 2617. [叶秋梅, 宋晔, 刘鹏, 胡隽隽. 化学进展, 2011, 23, 2617.]
-
[32]
(32) Zheng, Q.; Zhou, B. X.; Bai, J.; Cai,W. M.; Liao, J. S. Prog. Chem. 2007, 19, 117. [郑青, 周保学, 白晶, 蔡为民, 廖俊生, 化学进展, 2007, 19, 117.]
-
[33]
(33) Diggle, J.W.; Downie, T. C.; ulding, C.W. Chem. Rev. 1969, 69, 365. 10.1021/cr60259a005
-
[34]
(34) Despic, A.; Parkhutik, V. P. Modern Aspects of Electrochemistry; Plenum Press: New York, 1989; Vol. 23, pp 401-458.
-
[35]
(35) Parkhutik, V. P.; Shershulsky, V. I. J. Phys. D: Appl. Phys. 1992, 25, 1258. doi: 10.1088/0022-3727/25/8/017
-
[36]
(36) Thompson, G. E. Thin Solid Films 1997, 297, 192. doi: 10.1016/S0040-6090(96)09440-0
-
[37]
(37) Dickey, J. R.; Davidson, J. L.; Tzeng, Y. J. Electrochem. Soc. 1989, 136, 1772. doi: 10.1149/1.2097010
-
[38]
(38) Song, Y.; Zhu, X. F.;Wang, X. L.; Che, J. F.; Du, Y. J. Appl. Electrochem. 2001, 31, 1273. doi: 10.1023/A:1012746926209
-
[39]
(39) Seruga, M.; Hasenay, D. J. Appl. Electrochem. 2001, 31, 961. doi: 10.1023/A:1017556323508
-
[40]
(40) Zhu, Q.; Song, Y.; Zhu, X. F.;Wang, X. L. J. Electroanal. Chem. 2007, 601, 229. doi: 10.1016/j.jelechem.2006.11.016
-
[41]
(41) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297
-
[42]
(42) Song, Y.; Zhu, X. F.;Wang, X.;Wang, M. J. J. Power Sources 2006, 157, 610. doi: 10.1016/j.jpowsour.2005.07.085
-
[43]
(43) Overmeere, Q. V.; Proost, J. Electrochim. Acta 2010, 55, 4653. doi: 10.1016/j.electacta.2010.03.042
-
[44]
(44) Li, Y.; Shimada, H.; Sakairi, M.; Shigyo, K.; Takahashi, H.; Seo, M. J. Electrochem. Soc. 1997, 144, 866. doi: 10.1149/1.1837501
-
[45]
(45) Zhu, X. F.; Liu, L.; Zhao, B. C. The Chinese Journal of Nonferrous Metals 2003, 13, 1031. [朱绪飞, 刘霖, 赵宝昌. 中国有色金属学报, 2003, 13, 1031.]
-
[46]
(46) Lee,W.; Scholz, R.; Gösele, U. Nano Lett. 2008, 8, 2155. doi: 10.1021/nl080280x
-
[47]
(47) Keller, F.; Hunter, M. S.; Robinson, D. L. J. Electrochem. Soc. 1953, 100, 411. doi: 10.1149/1.2781142
-
[48]
(48) Vermilyea, D. A. Acta Metall. 1954, 2, 482. doi: 10.1016/0001-6160(54)90070-X
-
[49]
(49) Lakhiani, D. M.; Shreir, L. L. Nature 1960, 188, 49. doi: 10.1038/188049a0
-
[50]
(50) O'Sullivan, J. P.;Wood, G. C. Proc. R. Soc. Lond. A 1970, 317, 511.
-
[51]
(51) Thompson, G. E.; Furneaux, R. C.;Wood, G. C.; Richardson, J. A.; ode, J. S. Nature 1978, 272, 433. doi: 10.1038/272433a0
-
[52]
(52) Thompson, G. E.;Wood, G. C. Nature 1981, 290, 230. doi: 10.1038/290230a0
-
[53]
(53) Shimizu, K.; Thompson, G. R.;Wood, G. C. Thin Solid Films 1981, 81, 39. doi: 10.1016/0040-6090(81)90502-2
-
[54]
(54) Albella, J. M.; Montero, I.; Martinez-Duart, J. M. Electrochim. Acta 1987, 32, 255. doi: 10.1016/0013-4686(87)85032-6
-
[55]
(55) Furneaux, R. C.; Rigby,W. R.; Davidson, A. P. Nature 1989, 337, 147. doi: 10.1038/337147a0
-
[56]
(56) Shimizu, K.; Kobayashi, K.; Thompson, G. E. Philos. Mag. A 1992, 66, 643. doi: 10.1080/01418619208201581
-
[57]
(57) Masuda, H.; Fukuda, K. Science 1995, 268, 1466. doi: 10.1126/science.268.5216.1466
-
[58]
(58) Li, F. Y.; Zhang, L.; Metzger, R. M. Chem. Mater. 1998, 10, 2470. doi: 10.1021/cm980163a
-
[59]
(59) Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127
-
[60]
(60) Ono, S.; Saito, M.; Asoh, H. Electrochim. Acta 2005, 51, 827. doi: 10.1016/j.electacta.2005.05.058
-
[61]
(61) Jessensky, O.; Müller, F.; Gösele, U. Appl. Phys. Lett. 1998, 72, 1173. doi: 10.1063/1.121004
-
[62]
(62) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. J. Appl. Phys. 1998, 84, 6023. doi: 10.1063/1.368911
-
[63]
(63) Nielsch, K.; Choi, J.; Schwirn, K.;Wehrspohn, R. B.; Gösele, U. Nano Lett. 2002, 2, 677. doi: 10.1021/nl025537k
-
[64]
(64) Guo, D. Z.; Hou, S. M.; Xue, Z. Q. Chin. Phys. Lett. 2002, 19, 385. doi: 10.1088/0256-307X/19/3/330
-
[65]
(65) Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Curr. Opin. Solid St. M 2007, 11, 3. doi: 10.1016/j.cossms.2007.08.004
-
[66]
(66) Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791.
-
[67]
(67) Jiang, X. X.; Zhao, N. Q. Journal of Functional Materials 2005, 36, 487. [江小雪, 赵乃勤. 功能材料, 2005, 36, 487.] doi: 10.3321/j.issn:1001-9731.2005.04.002
-
[68]
(68) Lai, Y. K.; Sun, L.; Zuo, J.; Lin, C. J. Acta Phys. -Chim. Sin. 2004, 20, 1063. [赖跃坤, 孙岚, 左娟, 林昌健. 物理化学学报, 2004, 20, 1063.] 10.3866/PKU.WHXB20040901
-
[69]
(69) Siejka, J.; Ortega, C.; An, O. J. Electrochem. Soc. 1977, 124, 883. 10.1149/1.2133446
-
[70]
(70) Lee,W.; Schwirn, K.; Steinhart, M.; Pippel, E.; Scholz, R.; Gösele, U. Nat. Nanotechnol. 2008, 3, 234. doi: 10.1038/nnano.2008.54
-
[71]
(71) Skeldon, P.; Thompson, G. E.; Garcia-Vergara, S. J.; Iglesias- Rubianes, L.; Blanco-Pinzon, C. E. Electrochem. Solid. St. 2006, 9, B47.
-
[72]
(72) Garcia-Vergara, S. J.; Skeldon, P.; Thompson, G. E.; Habazaki, H. Electrochim. Acta 2006, 52, 681. doi: 10.1016/j.electacta.2006.05.054
-
[73]
(73) Garcia-Vergara, S. J.; Habazaki, H.; Skeldon, P.; Thompson, G. E. Electrochim. Acta 2010, 55, 3175. doi: 10.1016/j.electacta.2010.01.038
-
[74]
(74) Houser, J. E.; Hebert, K. R. Nat. Mater. 2009, 8, 415. doi: 10.1038/nmat2423
-
[75]
(75) Houser, J. E., Hebert, K. R. J. Electrochem. Soc. 2006, 153, B566.
-
[76]
(76) Garcia-Vergara, S. J.; Skeldon, P.; Thompson, G. E.; Habazaki, H. Corrosion Sci. 2007, 49, 3772. doi: 10.1016/j.corsci.2007.03.036
-
[77]
(77) Li, D. D.; Jiang, C. H.; Jiang, J. H.; Ren, X. Mater. Chem. Phys. 2008, 111, 168. doi: 10.1016/j.matchemphys.2008.03.044
-
[78]
(78) Matykina, E.; Arrabal, R.; Skeldon, P. Surf. Coat. Tech. 2010, 205, 1668. doi: 10.1016/j.surfcoat.2010.05.014
-
[79]
(79) Coz, F. L.; Arurault, L.; Datas, L. Mater. Charact. 2010, 61, 283. doi: 10.1016/j.matchar.2009.12.008
-
[80]
(80) Yang, S.; Aoki, Y.; Skeldon, P.; Thompson, G. E.; Habazaki, H. J. Solid State Electrochem. 2011, 15, 689. doi: 10.1007/s10008-010-1141-6
-
[81]
(81) Oh, J.; Thompson, C. V. Electrochim. Acta 2011, 56, 4044. doi: 10.1016/j.electacta.2011.02.002
-
[82]
(82) Li, Y. B.; Zheng, M. J.; Ma, L.; Shen,W. Z. Nanotechnology 2006, 17, 5101. doi: 10.1088/0957-4484/17/20/010
-
[83]
(83) Huang, Q.; Lye,W. K.; Reed, M. L. Nanotechnology 2007, 18, 405302. doi: 10.1088/0957-4484/18/40/405302
-
[84]
(84) Yao, Z.W.; Zheng, M. J.; Ma, L.; Shen,W. Z. Nanotechnology 2008, 19, 465705. doi: 10.1088/0957-4484/19/46/465705
-
[85]
(85) Bai, J.; Zhou, B. X.; Li, L. H.; Liu, Y. B.; Zheng, Q.; Shao, J. H.; Zhu, X. Y.; Cai,W. M.; Liao, J. S.; Zou, L. X. J. Mater. Sci. 2008, 43, 1880. doi: 10.1007/s10853-007-2418-8
-
[86]
(86) Li, D. D.; Jiang, C. H.; Jiang, J. H.; Lu, J. G. Chem. Mater. 2009, 21, 253. doi: 10.1021/cm8022242
-
[87]
(87) Li, D. D.; Zhao, L.; Jiang, C. H.; Lu, J. G. Nano Lett. 2010, 10, 2766. doi: 10.1021/nl1004493
-
[88]
(88) Lin, J.; Chen, J. F.; Chen, X. F. Electrochem. Commun. 2010, 12, 1062. doi: 10.1016/j.elecom.2010.05.027
-
[89]
(89) Lin, J.; Liu, K.; Chen, X. F. Small 2011, 7, 1784. doi: 10.1002/smll.201002098
-
[90]
(90) Ding, G. Q.; Shen,W. Z.; Zheng, M. J.; Zhou, Z, B. Nanotechnology 2006, 17, 2590. doi: 10.1088/0957-4484/17/10/024
-
[91]
(91) Ding, G. Q.; Zheng, M. J.; Cu,W. L.; Shen,W. Z. Nanotechnology 2005, 16, 1285. doi: 10.1088/0957-4484/16/8/050
-
[92]
(92) Cheng,W.; Xu, J. Y.; Hu, J.; Jin, X. J. Chin. J. Inorg. Chem. 2009, 25, 92. [程伟, 徐金叶, 胡静, 金学军. 无机化学学报, 2009, 25, 92.]
-
[93]
(93) Tao, J.; Tao, H. J.; Bao, Z. G.;Wang, L. Rare Metal Mater. Eng. 2009, 38, 967. [陶杰, 陶海军, 包祖国, 王玲. 稀有金属材料与工程, 2009, 38, 967.]
-
[94]
(94) Zhou, C. F.;Wang, Z. Y. J. Inorg. Mater. 2009, 24, 1125. [周成风, 王志义. 无机材料学报, 2009, 24, 1125.] doi: 10.3724/SP.J.1077.2009.01125
-
[95]
(95) Li, S. Q.; Yin, J. B.; Zhang, G. M. Sci. China Chem. 2010, 53, 1068. [李仕琦, 尹建波, 张耿民. 中国科学: 化学, 2010, 53, 1068.] doi: 10.1007/s11426-010-0155-3
-
[96]
(96) Chen, X. Q.; Zhang, X.W.; Lei, L. C. The Chinese Journal of Nonferrous Metals 2010, 20, 1724. [陈秀琴, 张兴旺, 雷乐成. 中国有色金属学报, 2010, 20, 1724.]
-
[97]
(97) Li, H. Y.;Wang, J. S.; Chen, X.; Zhou, M. L.; Sun, G. S.; Huang, K. L.; Guo, Q. N. Chin. J. Inorg. Chem. 2010, 26, 217. [李洪义, 王金淑, 陈欣, 周美玲, 孙果宋, 黄科林, 郭秋宁. 无机化学学报, 2010, 26, 217.]
-
[98]
(98) Chen,W.;Wu, J. S.; Yuan, J. H.; Xia, X. H.; Lin, X. H. J. Electroanal. Chem. 2007, 600, 257. doi: 10.1016/j.jelechem.2006.10.022
-
[99]
(99) Chen,W.;Wu, J. S.; Xia, X. H. ACS Nano 2008, 2, 959. doi: 10.1021/nn700389j
-
[100]
(100) Li, Y.; Ling, Z. Y.; Chen, S. S.;Wang, J. C. Nanotechnology 2008, 19, 225604. doi: 10.1088/0957-4484/19/22/225604
-
[101]
(101) Li, Y.; Ling, Z. Y.; Hu, X.; Liu, Y. S.; Chang, Y. J. Mater. Chem. 2011, 21, 9661. doi: 10.1039/c1jm10781j
-
[102]
(102) Li, Y.; Ling, Z. Y.; Hu, X.; Liu, Y. S.; Chang, Y. Chem. Commun. 2011, 47, 2173. doi: 10.1039/c0cc04907g
-
[103]
(103) Yu, X. F.; Li, Y. X.; Ge,W. Y.; Yang, Q. B.; Zhu, N. F.; Kalantar-Zadeh, K. Nanotechnology 2006, 17, 808. doi: 10.1088/0957-4484/17/3/033
-
[104]
(104) Wang, D. A.; Liu, Y.; Yu, B.; Zhou, F.; Liu,W. M. Chem. Mater. 2009, 21, 1198. doi: 10.1021/cm802384y
-
[105]
(105) Zhang, R.; Jiang, K. M.; Zhu, Y.; Qi, H. Y.; Ding, G. Q. Appl. Surf. Sci. 2011, 258, 586. doi: 10.1016/j.apsusc.2011.08.041
-
[106]
(106) Wang, Y.;Wu, Y. C.; Qin, Y. Q.; Xu, G. B.; Hu, X. Y.; Cui, J. W.; Zheng, H. M.; Hong, Y.; Zhang, X. Y. J. Alloy. Compd. 2011, 509, L157.
-
[107]
(107) Zhao, J. L.;Wang, X. H.; Chen, R. Z.; Li, L. T. Solid State Commun. 2005, 134, 705. doi: 10.1016/j.ssc.2005.02.028
-
[108]
(108) Li, S. Q.; Zhang, G. M.; Guo, D. Z.; Yu, L. G.; Zhang,W. J. Phys. Chem. C 2009, 113, 12759. doi: 10.1021/jp903037f
-
[109]
(109) Wang, N.; Zhang,W. D.; Xu, J. P.; Ma, B.; Zhang, Z. Z.; Jin, Q. Y.; Bunte, B.; Hüpkes, J.; Bochem, H. P. J. Solid State Electrochem. 2010, 14, 1377. doi: 10.1007/s10008-009-0959-2
-
[110]
(110) Xiao, X. F.; Liu, R. F.; Tian, T. J. Alloy. Compd. 2008, 466, 356. doi: 10.1016/j.jallcom.2007.11.032
-
[111]
(111) Zhu, Y. Y.; Ding, G. Q.; Ding, J. N.; Yuan, N. Y. Nanoscale Res. Lett. 2010, 5, 725. doi: 10.1007/s11671-010-9538-9
-
[112]
(112) Elsanousi, A.; Zhang, J.; Fadlalla, H. M.; Zhang, F.;Wang, H.; Ding, X.; Huang, Z. X.; Tang, C. J. Mater. Sci. 2008, 43, 7219. doi: 10.1007/s10853-008-2947-9
-
[113]
(113) Zhang, F.; Chen, S. G.; Yin, Y. S.; Lin, C.; Xue, C. R. J. Alloy. Compd. 2010, 490, 247. doi: 10.1016/j.jallcom.2009.09.169
-
[114]
(114) Ren, Y.W.; Zhang, K. S. Mater. Lett. 2009, 63, 1925. doi: 10.1016/j.matlet.2009.06.006
-
[115]
(115) Zhu, X. F.; Li, D.; Song, Y.; Xiao, Y. Mater. Lett. 2005, 59, 3160. doi: 10.1016/j.matlet.2005.05.038
-
[116]
(116) Yang, X. L.; Zhu, X. F.; Jia, H.; Han, T. Monatsh. Chem. 2009, 140, 595. doi: 10.1007/s00706-008-0098-y
-
[117]
(117) Zhu, X. F.; Liu, L.; Song, Y.; Jia, H.; Yu, H.; Xiao, X.; Yang, X. L. Mater. Lett. 2008, 62, 4038. doi: 10.1016/j.matlet.2008.05.062
-
[118]
(118) Zhu, X. F.; Liu, L.; Song, Y.; Jia, H.; Yu, H.; Xiao, X.; Yang, X. L. Monatsh. Chem. 2008, 139, 999. doi: 10.1007/s00706-008-0893-5
-
[119]
(119) Zhu, X. F.; Song, Y.; Liu, L.;Wang, C.; Zheng, J.; Jia, H.; Wang, X. Nanotechnology 2009, 20, 475303. doi: 10.1088/0957-4484/20/47/475303
-
[120]
(120) Poinern, G. E. J.; Ali, N.; Fawcett, D. Materials 2011, 4, 487. doi: 10.3390/ma4030487
-
[121]
(121) Patermarakis, G. J. Electroanal. Chem. 2009, 635, 39. doi: 10.1016/j.jelechem.2009.07.024
-
[122]
(122) Crossland, A. C.; Habazaki, H.; Shimizu, K.; Skeldon, P.; Thompson, G. E.;Wood, G. C.; Zhou, X.; Smith, C. J. Corrosion Sci. 1999, 41, 1945. doi: 10.1016/S0010-938X(99)00035-9
-
[123]
(123) Zhou, X.; Thompson, G. E.; Habazaki, H.; Paez, M. A.; Shimizu, K.; Skeldon, P.;Wood, G. C. J. Electrochem. Soc. 2000, 147, 1747. doi: 10.1149/1.1393428
-
[124]
(124) Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G. E. Corrosion Sci. 2004, 46, 2041. doi: 10.1016/j.corsci.2003.10.027
-
[125]
(125) Ono, S.; Ichinose, H.; Masuko, N. J. Electrochem. Soc. 1992, 139, L80.
-
[126]
(126) Su, Z. X.; Zhou,W. Z. Science Foundation in China 2008, 16, 36.
-
[127]
(127) Su, Z. X.; Hähner, G.; Zhou,W. Z. J. Mater. Chem. 2008, 18, 5787. doi: 10.1039/b812432a
-
[128]
(128) Su, Z. X.; Zhou,W. Z. Adv. Mater. 2008, 20, 3663. doi: 10.1002/adma.200800845
-
[129]
(129) Su, Z. X.; Bühl, M.; Zhou,W. Z. J. Am. Chem. Soc. 2009, 131, 8697. doi: 10.1021/ja902267b
-
[130]
(130) Su, Z. X.; Zhou,W. Z. J. Mater. Chem. 2009, 19, 2301. doi: 10.1039/b820504c
-
[131]
(131) Su, Z. X.; Zhou,W. Z. J. Mater. Chem. 2011, 21, 357. doi: 10.1039/c0jm02521f
-
[132]
(132) Su, Z. X.; Zhou,W. Z. J. Mater. Chem. 2011, 21, 8955. doi: 10.1039/c0jm04587j
-
[133]
(133) Schwirn, K.; Lee,W.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. ACS Nano 2008, 2, 302. doi: 10.1021/nn7001322
-
[134]
(134) Patermarakis, G.; Moussoutzanis, K. Electrochim. Acta 2009, 54, 2434. doi: 10.1016/j.electacta.2008.11.064
-
[135]
(135) Panaitescu, E.; Richter, C.; Menon, L. J. Electrochem. Soc. 2008, 155, E7.
-
[136]
(136) Friedman, A. L.; Panaitescu, E.; Richter, C.; Menon, L. J. Nanosci. Nanotechnol. 2008, 8, 5864. doi: 10.1166/jnn.2008.328
-
[137]
(137) Sieber, I. V.; Schmuki, P. J. Electrochem. Soc. 2005, 152, C639.
-
[138]
(138) Al-Abdullah, Z. T. Y.; Shin, Y.; Kler, R.; Perry, C. C.; Zhou,W. Z.; Chen, Q. Nanotechnology 2010, 21, 505601. doi: 10.1088/0957-4484/21/50/505601
-
[139]
(139) Matykina, E.; Arrabal, R.; Skeldon, P.; Thompson, G. E.; Habazaki, H. Thin Solid Films 2008, 516, 2296. doi: 10.1016/j.tsf.2007.08.104
-
[140]
(140) Patermarakis, G.; Moussoutzanis, K. J. Electroanal. Chem. 2011, 659, 176. doi: 10.1016/j.jelechem.2011.05.023
-
[141]
(141) Ispas, A.; Bund, A.; Vrublevsky, I. J. Solid State Electrochem. 2010, 14, 2121. doi: 10.1007/s10008-010-1043-7
-
[142]
(142) Chung, C. K.; Zhou, R. X.; Liu, T. Y.; Chang,W. T. Nanotechnology 2009, 20, 055301. doi: 10.1088/0957-4484/20/5/055301
-
[143]
(143) Berger, S.; Albu, S. P.; Schmidt-Stein, F.; Hildebrand, H.; Schmuki, P.; Hammond, J. S.; Paul, D. F.; Reichlmaier, S. Surf. Sci. 2011, 605, L57.
-
[144]
(144) Dong, H. Q.; Pan, X.; Xie, Q.; Meng, Q. Q.; Gao, J. R.;Wang, J. G. Acta Phys. -Chim. Sin. 2012, 28, 44. [董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国. 物理化学学报, 2012, 28, 44.] 10.3866/PKU.WHXB20122844
-
[1]
-
-
[1]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[2]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[3]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[4]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[5]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[6]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[7]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[8]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[9]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[10]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[11]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[12]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[13]
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
-
[14]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[15]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[16]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[17]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[18]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[19]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(1501)
- Abstract views(3153)
- HTML views(11)