Citation: LIU Xiao-Jun, LIN Tao, GAO Shao-Wei, MA Rui, ZHANG Jin-Yue, CAI Xin-Chen, YANG Lei, TENG Feng. TDDFT Investigation and Design for Fluorescent Molecules with Push-Pull Structures[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1337-1346. doi: 10.3866/PKU.WHXB201204092
-
The electronic and geometrical structures of the ground and excited states of six fluorescent emitters, namely 3-(dicyanomethylene)-5,5-dimethyl-1-(3-[9-(2-ethyl-hexyl)-carbazol]-vinyl) cyclohexene (DCDHCC), DCDHCC2, 3-(dicyanomethylene)-5,5-dimethyl-1(4-diphenylamino-styryl) cyclohexene (DCDPC), DCDPC2, 3-(dicyanomethylene)-5,5-dimethyl-1-(4-[9-carbazol]-styryl)cyclohexene (DCDCC), and 3-(dicyanomethylene)-5,5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene (DCDDC) which were specifically designed for organic light-emitting diodes (OLEDs), were studied using density functional theory (DFT) and time-dependent DFT (TDDFT) in conjunction with polarizable continuum models (PCMs). Five hybrid functionals, PBE0, M06, BMK, M062X, and CAM-B3LYP, were used and compared. The experimental spectra of the molecules in acetone solvent were precisely reproduced with the BMK functional. The ionization potential and the electron affinity were calculated to access the properties of the molecules in charge injection. It was found that, when double π-bridges and acceptors were used, the emission of emitters red-shifted to the optimal emitting region. Two brand new molecules, DCDCC2 and DCDDC2, which are the double-branched counterparts of DCDCC and DCDDC, respectively, have been designed. The calculated properties of DCDCC2 and DCDDC2 in spectra and charge injection suggested that they would be as effective in their capacities as fluorescent emitters as the above six emitters.
-
-
[1]
(1) Petsalakis, I. D.; Georgiadou, D. G.; Vasilopoulou, M.; Pistolis, G.; Dimotikali, D.; Argitis, P.; Theodorakopoulos, G. J. Phys. Chem. A 2010, 114, 5580.
-
[2]
(2) Rijkenberg, R. A.; Bebelaar, D.; Buma, W. J.; Hofstraat, J. W. J. Phys. Chem. A 2002, 106, 2446.
-
[3]
(3) Beljonne, D.; Bredas, J. L.; Cha, M.; Torruellas, W. E.; Stegeman, G. I.; Hofstraat, J. W.; Horsthuis, W. H. G.; Mohlmann, G. R. J. Chem. Phys. 1995, 103, 7834.
-
[4]
(4) Cha, M.; Torruellas, W. E.; Stegeman, G. I.; Horsthuis, W. H. G.; Mohlmann, G. R.; Meth, J. Appl. Phys. Lett. 1994, 65, 2648.
-
[5]
(5) Sun, X. B.; Liu, Y. Q.; Zhao, Z. H.; Zhu, D. B. Chin. Sci. Bull. 2003, 48, 2402.
-
[6]
(6) Li, J.; Liu, D.; Hong, Z.; Tong, S.; Wang, P.; Ma, C.; Lengyel, O.; Lee, C. S.; Kwong, H. L.; Lee, S. Chem. Mater. 2003, 15, 1486.
-
[7]
(7) Tao, X. T.; Miyata, S.; Sasabe, H.; Zhang, G. J.; Wada, T.; Jiang, M. H. Appl. Phys. Lett. 2001, 78, 279.
-
[8]
(8) Ju, H. D. Design, Synthesis and Properties of Isophorone-based Light-Emitting Materials. Ph.D. Dissertation, Shandong University, Jinan, 2007. [鞠海东. 异佛乐酮类发光材料的设计、合成与性质研究[D]. 济南: 山东大学, 2007.]
-
[9]
(9) Ju, H. D.; Tao, X. T.; Wan, Y.; Shi, J. H.; Yang, J. X.; Xin, Q.; Zou, D. C.; Jiang, M. H. Chem. Phys. Lett. 2006, 432, 321.
-
[10]
(10) Ju, H. D.; Wan, Y.; Yu, W. T.; Liu, A. Y.; Liu, Y.; Ren, Y.; Tao, X. T.; Zou, D. C. Thin Solid Films 2006, 515, 2403.
-
[11]
(11) Dreuw, A.; Head- rdon, M. Chem. Rev. 2005, 105, 4009.
-
[12]
(12) Minaev, B. F.; Baryshnikov, G. V.; Minaeva, V. A. Dyes Pigm. 2011, 92, 531.
-
[13]
(13) Baryshnikov, G. V.; Minaev, B. F.; Minaeva, V. A. Opt. Spectrosc. 2011, 110, 216. doi: 10.1134/S0030400X11020020
-
[14]
(14) Peng, B.; Yang, S. Q.; Li, L. L.; Cheng, F. Y.; Chen, J. J. Chem. Phys. 2010, 132, 34305. doi: 10.1063/1.3292639
-
[15]
(15) Suramitr, S.; Meeto, W.; Wolschann, P.; Hannongbua, S. Theor. Chem. Acc. 2010, 125, 35. doi: 10.1007/s00214-009-0655-4
-
[16]
(16) Plotner, J.; Tozer, D. J.; Dreuw, A. J. Chem. Theory Comput. 2010, 6, 2315. doi: 10.1021/ct1001973
-
[17]
(17) De Angelis, F. Chem. Phys. Lett. 2010, 493, 323.
-
[18]
(18) Baryshnikov, G. V.; Minaev, B. F.; Minaeva, V. A. Opt. Spectrosc. 2010, 108, 16. doi: 10.1134/S0030400X10010042
-
[19]
(19) Aittala, P. J.; Cramariuc, O.; Vasilescu, M.; Bandula, R.; Hukka, T. I. Chem. Phys. 2009, 360, 162. doi: 10.1016/j.chemphys.2009.04.020
-
[20]
(20) Li, Y. L.; Han, L.; Mei, Y.; Zhang, J. Z. H. Chem. Phys. Lett. 2009, 482, 217. doi: 10.1016/j.cplett.2009.10.026
-
[21]
(21) Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. J. Phys. Chem. A 2009, 113, 15118. doi: 10.1021/jp9052538
-
[22]
(22) Ploner, J.; Dreuw, A. Chem. Phys. 2008, 347, 472. doi: 10.1016/j.chemphys.2007.10.020
-
[23]
(23) Jacquemin, D.; Perpete, E. A.; Assfeld, X.; Scalmani, G.; Frisch, M. J.; Adamo, C. Chem. Phys. Lett. 2007, 438, 208. doi: 10.1016/j.cplett.2007.03.008
-
[24]
(24) Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. J. Chem. Theory Comput. 2009, 5, 2420. doi: 10.1021/ct900298e
-
[25]
(25) Jacquemin, D.; Perpete, E. A.; Ciofini, I.; Adamo, C. Accounts Chem. Res. 2009, 42, 326. doi: 10.1021/ar800163d
-
[26]
(26) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi: 10.1139/p80-159
-
[27]
(27) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
-
[28]
(28) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
-
[29]
(29) Becke, A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
-
[30]
(30) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822
-
[31]
(31) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[32]
(32) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[33]
(33) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
-
[34]
(34) Liu, X. J.; Ju, H. D.; Zhao, X.; Tao, X. T.; Bian, W. S.; Jiang, M. H. J. Chem. Phys. 2006, 124, 174711. doi: 10.1063/1.2189231
-
[35]
(35) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158. doi: 10.1063/1.478522
-
[36]
(36) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
-
[37]
(37) Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405. doi: 10.1063/1.1774975
-
[38]
(38) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. doi: 10.1016/j.cplett.2004.06.011
-
[39]
(39) Liu, X. J.; Yang, D.; Ju, H. D.; Teng, F.; Hou, Y. B.; Lou, Z. D. Chem. Phys. Lett. 2011, 503, 75. doi: 10.1016/j.cplett.2011.01.003
-
[40]
(40) Liu, X. J.; Wang, N.; Cheng, H. Acta Phys. -Chim. Sin. 2011, 27, 1640. [刘小君, 王宁, 程浩. 物理化学学报, 2011, 27, 1640.]
-
[41]
(41) Jacquemin, D.; Perpe Te, E. A.; Ciofini, I.; Adamo, C.; Valero, R.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6, 2071. doi: 10.1021/ct100119e
-
[42]
(42) Tian, B.; Eriksson, E. S. E.; Eriksson, L. A. J. Chem. Theory Comput. 2010, 6, 2086. doi: 10.1021/ct100148h
-
[43]
(43) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009
-
[44]
(44) Barone, V.; Improta, R.; Rega, N. Accounts Chem. Res. 2008, 41, 605.
-
[45]
(45) Cammi, R.; Cossi, M.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1996, 105, 10556.
-
[46]
(46) Cammi, R.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1996, 104, 4611.
-
[47]
(47) Liu, X. J.; Ju, H. D.; Zhao, X.; Tao, X. T.; Bian, W. S.; Jiang, M. H. J. Mol. Struct.-Theochem 2006, 770, 73.
-
[48]
(48) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.
-
[49]
(49) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
-
[50]
(50) Frisch, M.; Trucks, J. G. W.; Schlegel, H. B.; et al. Gaussian 09, Version A.02; Gaussian, Inc.: Wallingford CT, 2009.
-
[51]
(51) Le Bahers, T.; Pauporte, T.; Scalmani, G.; Adamo, C.; Ciofini, I. Phys. Chem. Chem. Phys. 2009, 11, 11276.
-
[52]
(52) Fang, X. H.; Hao, Y. Y.; Han, P. D.; Xu, B. S. J. Mol. Struct.-Theochem 2009, 896, 44.
-
[53]
(53) Zhao, G. J.; Han, K. L. J. Comput. Chem. 2008, 29, 2010.
-
[54]
(54) Chakraborty, A.; Kar, S.; Guchhait, N. Chem. Phys. 2006, 324, 733.
-
[55]
(55) Dreuw, A.; Weisman, J. L.; Head- rdon, M. J. Chem. Phys. 2003, 119, 2943.
-
[56]
(56) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007.
-
[57]
(57) Zou, L. Y.; Ren, A. M.; Feng, J. K.; Liu, Y. L.; Ran, X. Q.; Sun, C. C. J. Phys. Chem. A 2008, 112, 12172.
-
[1]
-
-
[1]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[6]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[7]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[8]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[9]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[10]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[11]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[12]
Hongyun Liu , Jiarun Li , Xinyi Li , Zhe Liu , Jiaxuan Li , Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070
-
[13]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[14]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[15]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[16]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[17]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[18]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[19]
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
-
[20]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[1]
Metrics
- PDF Downloads(936)
- Abstract views(2869)
- HTML views(40)