Citation: LIU Xiao-Jun, LIN Tao, GAO Shao-Wei, MA Rui, ZHANG Jin-Yue, CAI Xin-Chen, YANG Lei, TENG Feng. TDDFT Investigation and Design for Fluorescent Molecules with Push-Pull Structures[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1337-1346. doi: 10.3866/PKU.WHXB201204092 shu

TDDFT Investigation and Design for Fluorescent Molecules with Push-Pull Structures

  • Received Date: 14 February 2012
    Available Online: 9 April 2012

    Fund Project: 国家自然科学基金(21003009) (21003009) 北京交通大学(2009JBZ019-4, 本科生创新实验项目) (2009JBZ019-4, 本科生创新实验项目)

  • The electronic and geometrical structures of the ground and excited states of six fluorescent emitters, namely 3-(dicyanomethylene)-5,5-dimethyl-1-(3-[9-(2-ethyl-hexyl)-carbazol]-vinyl) cyclohexene (DCDHCC), DCDHCC2, 3-(dicyanomethylene)-5,5-dimethyl-1(4-diphenylamino-styryl) cyclohexene (DCDPC), DCDPC2, 3-(dicyanomethylene)-5,5-dimethyl-1-(4-[9-carbazol]-styryl)cyclohexene (DCDCC), and 3-(dicyanomethylene)-5,5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene (DCDDC) which were specifically designed for organic light-emitting diodes (OLEDs), were studied using density functional theory (DFT) and time-dependent DFT (TDDFT) in conjunction with polarizable continuum models (PCMs). Five hybrid functionals, PBE0, M06, BMK, M062X, and CAM-B3LYP, were used and compared. The experimental spectra of the molecules in acetone solvent were precisely reproduced with the BMK functional. The ionization potential and the electron affinity were calculated to access the properties of the molecules in charge injection. It was found that, when double π-bridges and acceptors were used, the emission of emitters red-shifted to the optimal emitting region. Two brand new molecules, DCDCC2 and DCDDC2, which are the double-branched counterparts of DCDCC and DCDDC, respectively, have been designed. The calculated properties of DCDCC2 and DCDDC2 in spectra and charge injection suggested that they would be as effective in their capacities as fluorescent emitters as the above six emitters.
  • 加载中
    1. [1]

      (1) Petsalakis, I. D.; Georgiadou, D. G.; Vasilopoulou, M.; Pistolis, G.; Dimotikali, D.; Argitis, P.; Theodorakopoulos, G. J. Phys. Chem. A 2010, 114, 5580.

    2. [2]

      (2) Rijkenberg, R. A.; Bebelaar, D.; Buma, W. J.; Hofstraat, J. W. J. Phys. Chem. A 2002, 106, 2446.

    3. [3]

      (3) Beljonne, D.; Bredas, J. L.; Cha, M.; Torruellas, W. E.; Stegeman, G. I.; Hofstraat, J. W.; Horsthuis, W. H. G.; Mohlmann, G. R. J. Chem. Phys. 1995, 103, 7834.

    4. [4]

      (4) Cha, M.; Torruellas, W. E.; Stegeman, G. I.; Horsthuis, W. H. G.; Mohlmann, G. R.; Meth, J. Appl. Phys. Lett. 1994, 65, 2648.

    5. [5]

      (5) Sun, X. B.; Liu, Y. Q.; Zhao, Z. H.; Zhu, D. B. Chin. Sci. Bull. 2003, 48, 2402.

    6. [6]

      (6) Li, J.; Liu, D.; Hong, Z.; Tong, S.; Wang, P.; Ma, C.; Lengyel, O.; Lee, C. S.; Kwong, H. L.; Lee, S. Chem. Mater. 2003, 15, 1486.

    7. [7]

      (7) Tao, X. T.; Miyata, S.; Sasabe, H.; Zhang, G. J.; Wada, T.; Jiang, M. H. Appl. Phys. Lett. 2001, 78, 279.

    8. [8]

      (8) Ju, H. D. Design, Synthesis and Properties of Isophorone-based Light-Emitting Materials. Ph.D. Dissertation, Shandong University, Jinan, 2007. [鞠海东. 异佛乐酮类发光材料的设计、合成与性质研究[D]. 济南: 山东大学, 2007.]

    9. [9]

      (9) Ju, H. D.; Tao, X. T.; Wan, Y.; Shi, J. H.; Yang, J. X.; Xin, Q.; Zou, D. C.; Jiang, M. H. Chem. Phys. Lett. 2006, 432, 321.

    10. [10]

      (10) Ju, H. D.; Wan, Y.; Yu, W. T.; Liu, A. Y.; Liu, Y.; Ren, Y.; Tao, X. T.; Zou, D. C. Thin Solid Films 2006, 515, 2403.

    11. [11]

      (11) Dreuw, A.; Head- rdon, M. Chem. Rev. 2005, 105, 4009.

    12. [12]

      (12) Minaev, B. F.; Baryshnikov, G. V.; Minaeva, V. A. Dyes Pigm. 2011, 92, 531.

    13. [13]

      (13) Baryshnikov, G. V.; Minaev, B. F.; Minaeva, V. A. Opt. Spectrosc. 2011, 110, 216.  doi: 10.1134/S0030400X11020020

    14. [14]

      (14) Peng, B.; Yang, S. Q.; Li, L. L.; Cheng, F. Y.; Chen, J. J. Chem. Phys. 2010, 132, 34305.  doi: 10.1063/1.3292639

    15. [15]

      (15) Suramitr, S.; Meeto, W.; Wolschann, P.; Hannongbua, S. Theor. Chem. Acc. 2010, 125, 35.  doi: 10.1007/s00214-009-0655-4

    16. [16]

      (16) Plotner, J.; Tozer, D. J.; Dreuw, A. J. Chem. Theory Comput. 2010, 6, 2315.  doi: 10.1021/ct1001973

    17. [17]

      (17) De Angelis, F. Chem. Phys. Lett. 2010, 493, 323.

    18. [18]

      (18) Baryshnikov, G. V.; Minaev, B. F.; Minaeva, V. A. Opt. Spectrosc. 2010, 108, 16.  doi: 10.1134/S0030400X10010042

    19. [19]

      (19) Aittala, P. J.; Cramariuc, O.; Vasilescu, M.; Bandula, R.; Hukka, T. I. Chem. Phys. 2009, 360, 162.  doi: 10.1016/j.chemphys.2009.04.020

    20. [20]

      (20) Li, Y. L.; Han, L.; Mei, Y.; Zhang, J. Z. H. Chem. Phys. Lett. 2009, 482, 217.  doi: 10.1016/j.cplett.2009.10.026

    21. [21]

      (21) Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.; Fantacci, S. J. Phys. Chem. A 2009, 113, 15118.  doi: 10.1021/jp9052538

    22. [22]

      (22) Ploner, J.; Dreuw, A. Chem. Phys. 2008, 347, 472.  doi: 10.1016/j.chemphys.2007.10.020

    23. [23]

      (23) Jacquemin, D.; Perpete, E. A.; Assfeld, X.; Scalmani, G.; Frisch, M. J.; Adamo, C. Chem. Phys. Lett. 2007, 438, 208.  doi: 10.1016/j.cplett.2007.03.008

    24. [24]

      (24) Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. J. Chem. Theory Comput. 2009, 5, 2420.  doi: 10.1021/ct900298e

    25. [25]

      (25) Jacquemin, D.; Perpete, E. A.; Ciofini, I.; Adamo, C. Accounts Chem. Res. 2009, 42, 326.  doi: 10.1021/ar800163d

    26. [26]

      (26) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.  doi: 10.1139/p80-159

    27. [27]

      (27) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.

    28. [28]

      (28) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.

    29. [29]

      (29) Becke, A. D. Phys. Rev. A 1988, 38, 3098.  doi: 10.1103/PhysRevA.38.3098

    30. [30]

      (30) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.  doi: 10.1103/PhysRevB.33.8822

    31. [31]

      (31) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    32. [32]

      (32) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    33. [33]

      (33) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  doi: 10.1103/PhysRevB.46.6671

    34. [34]

      (34) Liu, X. J.; Ju, H. D.; Zhao, X.; Tao, X. T.; Bian, W. S.; Jiang, M. H. J. Chem. Phys. 2006, 124, 174711.  doi: 10.1063/1.2189231

    35. [35]

      (35) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.  doi: 10.1063/1.478522

    36. [36]

      (36) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    37. [37]

      (37) Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.  doi: 10.1063/1.1774975

    38. [38]

      (38) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.  doi: 10.1016/j.cplett.2004.06.011

    39. [39]

      (39) Liu, X. J.; Yang, D.; Ju, H. D.; Teng, F.; Hou, Y. B.; Lou, Z. D. Chem. Phys. Lett. 2011, 503, 75.  doi: 10.1016/j.cplett.2011.01.003

    40. [40]

      (40) Liu, X. J.; Wang, N.; Cheng, H. Acta Phys. -Chim. Sin. 2011, 27, 1640. [刘小君, 王宁, 程浩. 物理化学学报, 2011, 27, 1640.]

    41. [41]

      (41) Jacquemin, D.; Perpe Te, E. A.; Ciofini, I.; Adamo, C.; Valero, R.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6, 2071.  doi: 10.1021/ct100119e

    42. [42]

      (42) Tian, B.; Eriksson, E. S. E.; Eriksson, L. A. J. Chem. Theory Comput. 2010, 6, 2086.  doi: 10.1021/ct100148h

    43. [43]

      (43) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.  doi: 10.1021/cr9904009

    44. [44]

      (44) Barone, V.; Improta, R.; Rega, N. Accounts Chem. Res. 2008, 41, 605.

    45. [45]

      (45) Cammi, R.; Cossi, M.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1996, 105, 10556.

    46. [46]

      (46) Cammi, R.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1996, 104, 4611.

    47. [47]

      (47) Liu, X. J.; Ju, H. D.; Zhao, X.; Tao, X. T.; Bian, W. S.; Jiang, M. H. J. Mol. Struct.-Theochem 2006, 770, 73.

    48. [48]

      (48) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys. 1988, 89, 2193.

    49. [49]

      (49) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

    50. [50]

      (50) Frisch, M.; Trucks, J. G. W.; Schlegel, H. B.; et al. Gaussian 09, Version A.02; Gaussian, Inc.: Wallingford CT, 2009.

    51. [51]

      (51) Le Bahers, T.; Pauporte, T.; Scalmani, G.; Adamo, C.; Ciofini, I. Phys. Chem. Chem. Phys. 2009, 11, 11276.

    52. [52]

      (52) Fang, X. H.; Hao, Y. Y.; Han, P. D.; Xu, B. S. J. Mol. Struct.-Theochem 2009, 896, 44.

    53. [53]

      (53) Zhao, G. J.; Han, K. L. J. Comput. Chem. 2008, 29, 2010.

    54. [54]

      (54) Chakraborty, A.; Kar, S.; Guchhait, N. Chem. Phys. 2006, 324, 733.

    55. [55]

      (55) Dreuw, A.; Weisman, J. L.; Head- rdon, M. J. Chem. Phys. 2003, 119, 2943.

    56. [56]

      (56) Dreuw, A.; Head- rdon, M. J. Am. Chem. Soc. 2004, 126, 4007.

    57. [57]

      (57) Zou, L. Y.; Ren, A. M.; Feng, J. K.; Liu, Y. L.; Ran, X. Q.; Sun, C. C. J. Phys. Chem. A 2008, 112, 12172.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    8. [8]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    13. [13]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    14. [14]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(936)
  • Abstract views(2930)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return